Suppr超能文献

载氨氯地平的 PEG-PCL 胶束的长效可调释用于慢性高血压的定制化治疗。

Long-acting tunable release of amlodipine loaded PEG-PCL micelles for tailored treatment of chronic hypertension.

机构信息

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; University of Chinese Academy of Science (UCAS), Beijing, China.

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.

出版信息

Nanomedicine. 2021 Oct;37:102417. doi: 10.1016/j.nano.2021.102417. Epub 2021 Jun 22.

Abstract

Hypertension is a chronic condition that requires lifelong therapeutic management. Strict adherence to drug administration timing improves efficacy, while poor adherence leads to safety concerns. In light of these challenges, we present a nanofluidic technology that enables long-acting drug delivery with tunable timing of drug administration using buried gate electrodes in nanochannels. We developed a poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone) (PEG-PCL)-based micellar formulation of amlodipine besylate, a calcium channel blocker for hypertension treatment. The electrostatically charged PEG-PCL micellar formulation enhanced drug solubility and rendered amlodipine responsive to electrostatic release gating in nanochannels for sustained release at clinically relevant therapeutic dose. Using a low-power (<3 VDC) gating potential, we demonstrated tunable release of amlodipine-loaded micelles. Additionally, we showed that the released drug maintained biological activity via calcium ion blockade in vitro. This study represents a proof of concept for the potential applicability of our strategy for chronotherapeutic management of hypertension.

摘要

高血压是一种需要终身治疗管理的慢性疾病。严格遵循药物给药时间可以提高疗效,而不良的依从性则会引发安全性问题。有鉴于此,我们提出了一种基于纳流控技术的长效药物输送系统,该系统使用纳米通道中的埋置栅电极,可实现给药时间的可调控制。我们开发了一种基于聚乙二醇甲基醚-聚己内酯(PEG-PCL)的苯磺酸氨氯地平(amlodipine besylate)胶束制剂,苯磺酸氨氯地平是一种用于治疗高血压的钙通道阻滞剂。带电荷的 PEG-PCL 胶束制剂提高了药物的溶解度,并使氨氯地平对纳米通道中的静电释放门控产生响应,从而以临床相关的治疗剂量进行持续释放。通过使用低功率(<3VDC)门控电位,我们证明了载药胶束的可调节释放。此外,我们还表明,释放的药物通过体外阻断钙离子来保持生物活性。这项研究为我们的策略在高血压的时间治疗管理中的潜在应用提供了概念验证。

相似文献

1
Long-acting tunable release of amlodipine loaded PEG-PCL micelles for tailored treatment of chronic hypertension.
Nanomedicine. 2021 Oct;37:102417. doi: 10.1016/j.nano.2021.102417. Epub 2021 Jun 22.
3
Stabilization of poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer micelles via aromatic groups for improved drug delivery properties.
J Colloid Interface Sci. 2018 Mar 15;514:468-478. doi: 10.1016/j.jcis.2017.12.057. Epub 2017 Dec 20.
4
In vitro and in vivo delivery of artemisinin loaded PCL-PEG-PCL micelles and its pharmacokinetic study.
Artif Cells Nanomed Biotechnol. 2018 Aug;46(5):926-936. doi: 10.1080/21691401.2017.1347880. Epub 2017 Jul 7.
5
Methotrexate-loaded biodegradable polymeric micelles for lymphoma therapy.
Int J Pharm. 2019 Feb 25;557:74-85. doi: 10.1016/j.ijpharm.2018.12.025. Epub 2018 Dec 15.
6
Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery.
Biomacromolecules. 2020 Feb 10;21(2):397-407. doi: 10.1021/acs.biomac.9b01006. Epub 2019 Oct 16.
7
Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro.
J Nanosci Nanotechnol. 2011 Jun;11(6):5054-61. doi: 10.1166/jnn.2011.4121.
10
PEG-stabilized micellar system with positively charged polyester core for fast pH-responsive drug release.
Pharm Res. 2012 Jun;29(6):1582-94. doi: 10.1007/s11095-012-0669-9. Epub 2012 Jan 21.

引用本文的文献

1
A Comprehensive Review on Nanoparticles as Drug Delivery System and Their Role for Management of Hypertension.
Curr Pharm Biotechnol. 2025;26(2):169-185. doi: 10.2174/0113892010291414240322112508.
2
In Vivo Evaluation of Self-assembled nano-Saikosaponin-a for Epilepsy Treatment.
Mol Biotechnol. 2024 Sep;66(9):2230-2240. doi: 10.1007/s12033-023-00851-7. Epub 2023 Aug 23.
3
A Revolutionary Blueprint for Mitigation of Hypertension via Nanoemulsion.
Biomed Res Int. 2022 Apr 14;2022:4109874. doi: 10.1155/2022/4109874. eCollection 2022.
4
Emerging nanotechnologies in cardiovascular medicine.
Nanomedicine. 2022 Jan;39:102472. doi: 10.1016/j.nano.2021.102472. Epub 2021 Oct 26.

本文引用的文献

1
Preventive efficacy of a tenofovir alafenamide fumarate nanofluidic implant in SHIV-challenged nonhuman primates.
Adv Ther (Weinh). 2021 Mar;4(3). doi: 10.1002/adtp.202000163. Epub 2020 Dec 16.
3
Ingestion-time - relative to circadian rhythms - differences in the pharmacokinetics and pharmacodynamics of hypertension medications.
Expert Opin Drug Metab Toxicol. 2020 Dec;16(12):1159-1173. doi: 10.1080/17425255.2020.1825681. Epub 2020 Sep 28.
4
Medication Non-adherence: a Major Cause of Resistant Hypertension.
Curr Cardiol Rep. 2020 Sep 10;22(11):133. doi: 10.1007/s11886-020-01400-3.
5
Silicon Nanofluidic Membrane for Electrostatic Control of Drugs and Analytes Elution.
Pharmaceutics. 2020 Jul 19;12(7):679. doi: 10.3390/pharmaceutics12070679.
6
Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery.
Lab Chip. 2020 May 5;20(9):1562-1576. doi: 10.1039/d0lc00121j.
7
Finite-Size Charged Species Diffusion and pH Change in Nanochannels.
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):12246-12255. doi: 10.1021/acsami.9b19182. Epub 2020 Mar 2.
8
Medication non-adherence: an overlooked target for quality improvement interventions.
BMJ Qual Saf. 2020 Apr;29(4):271-273. doi: 10.1136/bmjqs-2019-009984. Epub 2019 Dec 20.
9
The Medication Adherence Report Scale: A measurement tool for eliciting patients' reports of nonadherence.
Br J Clin Pharmacol. 2020 Jul;86(7):1281-1288. doi: 10.1111/bcp.14193. Epub 2020 May 18.
10
Remotely controlled nanofluidic implantable platform for tunable drug delivery.
Lab Chip. 2019 Jun 25;19(13):2192-2204. doi: 10.1039/c9lc00394k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验