文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

弥散磁共振成像连接解剖学的死后映射验证。

Post mortem mapping of connectional anatomy for the validation of diffusion MRI.

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.

Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

出版信息

Neuroimage. 2022 Aug 1;256:119146. doi: 10.1016/j.neuroimage.2022.119146. Epub 2022 Mar 25.


DOI:10.1016/j.neuroimage.2022.119146
PMID:35346838
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9832921/
Abstract

Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.

摘要

弥散磁共振成像(dMRI)是研究脑回路的独特工具,因为它可以使我们在体内成像轴突束的宏观轨迹和微观结构特性。人类连接组计划开创了 dMRI 采集和分析令人印象深刻的进步时代。由于这些努力,可在体内获得的 dMRI 数据的质量得到了实质性的提高,并且此类数据的大量收集也变得广泛可用。尽管取得了这些进展,但 dMRI 的主要限制仍然存在:它不能直接成像轴突,而只能提供基于水分子扩散的间接测量。因此,它必须通过允许直接可视化轴突但只能在死后脑组织中进行的方法进行验证。在这篇综述中,我们讨论了从 dMRI 中提取的连接解剖结构的各种特征的验证方法,包括宏观尺度(轴突束的轨迹)和微观尺度(轴突方向和其他微观结构特性)。我们介绍了一系列验证工具,包括解剖示踪研究、克林格勒解剖、髓鞘染色、无标记光学成像技术等。我们概述了每种技术的基本原理、其局限性以及迄今为止它告诉我们有关不同 dMRI 采集和分析方法的准确性的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/a25f558be046/nihms-1860484-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/e3b5b73cf123/nihms-1860484-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/e42c97599095/nihms-1860484-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/4eaade5fb64c/nihms-1860484-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/2a1fcc9a57e6/nihms-1860484-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/a25f558be046/nihms-1860484-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/e3b5b73cf123/nihms-1860484-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/e42c97599095/nihms-1860484-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/4eaade5fb64c/nihms-1860484-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/2a1fcc9a57e6/nihms-1860484-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/9832921/a25f558be046/nihms-1860484-f0005.jpg

相似文献

[1]
Post mortem mapping of connectional anatomy for the validation of diffusion MRI.

Neuroimage. 2022-8-1

[2]
Optimization of macaque brain DMRI connectome by neuron tracing and myelin stain data.

Comput Med Imaging Graph. 2018-6-25

[3]
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.

Neuroimage. 2022-8-15

[4]
Multi-scale and Multimodal Fusion of Tract-tracing, Myelin Stain and DTI-derived Fibers in Macaque Brains.

Med Image Comput Comput Assist Interv. 2015

[5]
NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing.

Neuroimage. 2021-2-1

[6]
Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome.

Neuroimage. 2021-11

[7]
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

Neuroimage. 2018-5-28

[8]
Deep learning based segmentation of brain tissue from diffusion MRI.

Neuroimage. 2021-6

[9]
Resolution and b value dependent structural connectome in ex vivo mouse brain.

Neuroimage. 2022-7-15

[10]
A field-monitoring-based approach for correcting eddy-current-induced artifacts of up to the 2 spatial order in human-connectome-project-style multiband diffusion MRI experiment at 7T: A pilot study.

Neuroimage. 2020-8-1

引用本文的文献

[1]
Interplay between MRI-based axon diameter and myelination estimates in macaque and human brain.

Imaging Neurosci (Camb). 2025-5-12

[2]
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data.

Imaging Neurosci (Camb). 2025-3-24

[3]
Imaging of developing human brains with ex vivo PSOCT and dMRI.

Imaging Neurosci (Camb). 2025-3-24

[4]
Imaging of the superficial white matter in health and disease.

Imaging Neurosci (Camb). 2024-7-22

[5]
Strong gradients, cool performance: A 64-channel array coil with concurrent field monitoring and thermal control for ex vivo diffusion-weighted brain imaging using the 3T connectome 2.0 MRI scanner.

Magn Reson Med. 2025-11

[6]
MRI and non-MRI quantifiable neuroanatomical and functional parameters are useful for tractography.

Brain Struct Funct. 2025-6-5

[7]
An open, fully-processed data resource for studying mood and sleep variability in the developing brain.

bioRxiv. 2025-5-14

[8]
Cross-species neuroanatomy in primates using tractography.

Brain Struct Funct. 2025-5-28

[9]
Scattering polarimetry enables correlative nerve fiber imaging and multimodal analysis.

Sci Rep. 2025-5-27

[10]
7 Tesla multimodal MRI dataset of ex-vivo human brain.

Sci Data. 2025-5-22

本文引用的文献

[1]
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.

Neuroimage. 2022-8-15

[2]
Does powder averaging remove dispersion bias in diffusion MRI diameter estimates within real 3D axonal architectures?

Neuroimage. 2022-3

[3]
High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation.

Neuroimage. 2021-12-1

[4]
Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome.

Neuroimage. 2021-11

[5]
Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography.

Neuroimage. 2021-10-1

[6]
A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner.

Neuroimage. 2021-9

[7]
Multi-modal imaging of a single mouse brain over five orders of magnitude of resolution.

Neuroimage. 2021-9

[8]
Synchrotron X-ray micro-CT as a validation dataset for diffusion MRI in whole mouse brain.

Magn Reson Med. 2021-8

[9]
The ventral pathway of the human brain: A continuous association tract system.

Neuroimage. 2021-7-1

[10]
Anatomy and White Matter Connections of the Middle Frontal Gyrus.

World Neurosurg. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索