Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Neuroimage. 2022 Aug 1;256:119146. doi: 10.1016/j.neuroimage.2022.119146. Epub 2022 Mar 25.
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
弥散磁共振成像(dMRI)是研究脑回路的独特工具,因为它可以使我们在体内成像轴突束的宏观轨迹和微观结构特性。人类连接组计划开创了 dMRI 采集和分析令人印象深刻的进步时代。由于这些努力,可在体内获得的 dMRI 数据的质量得到了实质性的提高,并且此类数据的大量收集也变得广泛可用。尽管取得了这些进展,但 dMRI 的主要限制仍然存在:它不能直接成像轴突,而只能提供基于水分子扩散的间接测量。因此,它必须通过允许直接可视化轴突但只能在死后脑组织中进行的方法进行验证。在这篇综述中,我们讨论了从 dMRI 中提取的连接解剖结构的各种特征的验证方法,包括宏观尺度(轴突束的轨迹)和微观尺度(轴突方向和其他微观结构特性)。我们介绍了一系列验证工具,包括解剖示踪研究、克林格勒解剖、髓鞘染色、无标记光学成像技术等。我们概述了每种技术的基本原理、其局限性以及迄今为止它告诉我们有关不同 dMRI 采集和分析方法的准确性的信息。
Neuroimage. 2022-8-1
Comput Med Imaging Graph. 2018-6-25
Med Image Comput Comput Assist Interv. 2015
Neuroimage. 2021-6
Neuroimage. 2022-7-15
Imaging Neurosci (Camb). 2025-5-12
Imaging Neurosci (Camb). 2025-3-24
Imaging Neurosci (Camb). 2025-3-24
Imaging Neurosci (Camb). 2024-7-22
Brain Struct Funct. 2025-6-5
Brain Struct Funct. 2025-5-28
Sci Data. 2025-5-22
Neuroimage. 2021-7-1
World Neurosurg. 2021-6