Suppr超能文献

利用矩距离指数和偏最小二乘回归优化傅里叶变换红外光谱扫描次数的设置:在土壤光谱学中的应用。

Optimizing setup of scan number in FTIR spectroscopy using the moment distance index and PLS regression: application to soil spectroscopy.

机构信息

Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences, Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco.

Department of Soils and Food Engineering, Faculty of Agriculture and Food Sciences, Laval University, Quebec, Canada.

出版信息

Sci Rep. 2021 Jun 25;11(1):13358. doi: 10.1038/s41598-021-92858-w.

Abstract

Vibrational spectroscopy such as Fourier-transform infrared (FTIR), has been used successfully for soil diagnosis owing to its low cost, minimal sample preparation, non-destructive nature, and reliable results. This study aimed at optimizing one of the essential settings during the acquisition of FTIR spectra (viz. Scans number) using the standardized moment distance index (SMDI) as a metric that could trap the fine points of the curve and extract optimal spectral fingerprints of the sample. Furthermore, it can be used successfully to assess the spectra resemblance. The study revealed that beyond 50 scans the similarity of the acquisitions has been remarkably improved. Subsequently, the effect of the number of scans on the predictive ability of partial least squares regression models for the estimation of five selected soil properties (i.e., soil pH in water, soil organic carbon, total nitrogen, cation exchange capacity and Olsen phosphorus) was assessed, and the results showed a general tendency in improving the correlation coefficient (R) as the number of scans increased from 10 to 80. In contrast, the cross-validation error RMSECV decreased with increasing scan number, reflecting an improvement of the predictive quality of the calibration models with an increasing number of scans.

摘要

振动光谱学,如傅里叶变换红外(FTIR),由于其成本低、样品制备简单、无损和可靠的结果,已成功用于土壤诊断。本研究旨在优化 FTIR 光谱采集过程中的一个基本设置(即扫描次数),使用标准化矩距离指数(SMDI)作为一种指标,可以捕捉曲线的细微之处,并提取样本的最佳光谱特征。此外,它可以成功地用于评估光谱相似性。研究表明,超过 50 次扫描后,采集的相似性得到了显著提高。随后,评估了扫描次数对用于估计五个选定土壤性质(即水土 pH 值、土壤有机碳、总氮、阳离子交换容量和Olsen 磷)的偏最小二乘回归模型预测能力的影响,结果表明,随着扫描次数从 10 增加到 80,相关系数(R)呈普遍增加趋势。相比之下,随着扫描次数的增加,交叉验证误差 RMSECV 减小,反映了随着扫描次数的增加,校准模型的预测质量得到了改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc8/8233441/1f6120923e0b/41598_2021_92858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验