Suppr超能文献

TimeCycle:一种基于拓扑学的方法,用于检测昼夜时间序列数据中的循环转录本。

TimeCycle: topology inspired method for the detection of cycling transcripts in circadian time-series data.

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.

Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA.

出版信息

Bioinformatics. 2021 Dec 7;37(23):4405-4413. doi: 10.1093/bioinformatics/btab476.

Abstract

MOTIVATION

The circadian rhythm drives the oscillatory expression of thousands of genes across all tissues. The recent revolution in high-throughput transcriptomics, coupled with the significant implications of the circadian clock for human health, has sparked an interest in circadian profiling studies to discover genes under circadian control.

RESULT

We present TimeCycle: a topology-based rhythm detection method designed to identify cycling transcripts. For a given time-series, the method reconstructs the state space using time-delay embedding, a data transformation technique from dynamical systems theory. In the embedded space, Takens' theorem proves that the dynamics of a rhythmic signal will exhibit circular patterns. The degree of circularity of the embedding is calculated as a persistence score using persistent homology, an algebraic method for discerning the topological features of data. By comparing the persistence scores to a bootstrapped null distribution, cycling genes are identified. Results in both synthetic and biological data highlight TimeCycle's ability to identify cycling genes across a range of sampling schemes, number of replicates and missing data. Comparison to competing methods highlights their relative strengths, providing guidance as to the optimal choice of cycling detection method.

AVAILABILITYAND IMPLEMENTATION

A fully documented open-source R package implementing TimeCycle is available at: https://nesscoder.github.io/TimeCycle/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

昼夜节律驱动着所有组织中数千个基因的振荡表达。高通量转录组学的最新革命,加上生物钟对人类健康的重大影响,激发了人们对昼夜节律分析研究的兴趣,以发现受昼夜节律控制的基因。

结果

我们提出了 TimeCycle:一种基于拓扑的节律检测方法,旨在识别周期性转录本。对于给定的时间序列,该方法使用时滞嵌入来重构状态空间,这是动力系统理论中的一种数据转换技术。在嵌入空间中,Takens 定理证明了节律信号的动力学将表现出循环模式。嵌入的循环程度使用持久同调(Persistent Homology)作为持久性得分进行计算,这是一种用于辨别数据拓扑特征的代数方法。通过将持久性得分与自举的零分布进行比较,识别出周期性基因。在合成和生物数据中的结果都强调了 TimeCycle 在各种采样方案、重复次数和缺失数据下识别周期性基因的能力。与竞争方法的比较突出了它们的相对优势,为选择最佳的周期性检测方法提供了指导。

可用性和实现

一个实现了 TimeCycle 的完全记录的开源 R 包可在以下网址获得:https://nesscoder.github.io/TimeCycle/。

补充信息

补充数据可在《生物信息学》在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c3/8652031/a7453ec35a52/btab476f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验