Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Interdiscip Sci. 2022 Mar;14(1):269-278. doi: 10.1007/s12539-021-00471-2. Epub 2021 Aug 9.
High-throughput next-generation sequencing (NGS) technologies and real-time circadian dynamics reporting systems produce large amounts of experimental data on RNA and protein levels in the field of circadian rhythm and therefore require statistical knowledge and computational skills for quantitative analysis. Although there are many software applications that can process these data, they are often difficult to use and computationally inefficient. Hence, a convenient, user-friendly tool that can accurately acquire rhythmic components (period, amplitude, and phase) of circadian clock genes is necessary. Here, we develop a new analysis tool named rhythmic component analysis tool (RCAT), which has an easily understood interface featuring a one-button operation, that presents all results as tables and images and automatically saves them as CSV files. We use the relative amplitude error (RAE), widely-adopted criteria on the circadian research field to estimate the quality of results. To illustrate the analytical ability of the RCAT under different situations, we generate four groups of time-series data by CircaInSilico (a web server for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms) with different collection intervals and amplitude ranges and use RCAT to analyze them. To demonstrate the effectiveness of RCAT, we analyze two sets of case studies with time-series data: one set uses microarray and RNA-Seq data from the gene expression omnibus (GEO) repository to identify core clock genes (CCGs) with significant periodicity in the liver, and the other set uses real-time fluorescence reporting data collected by Lumicycle (a commonly-used luminometer) to calculate the precise period, amplitude and phase. In these examples, most cycling samples are successfully detected by the RCAT within a short collection time, and accurate rhythmic components are also successfully computed. These results indicate that RCAT improves flexibility and convenience in periodic oscillation data analysis. RCAT, is freely available at: https://github.com/lzbbest/Rhythmic-Component-Analysis-Tool/releases . It, as a cross-platform software, can be run not only on Linux, but also on Win10, Win8 and Win7.
高通量下一代测序(NGS)技术和实时昼夜动态报告系统在昼夜节律领域产生了大量关于 RNA 和蛋白质水平的实验数据,因此需要统计知识和计算技能进行定量分析。虽然有许多软件应用程序可以处理这些数据,但它们通常难以使用且计算效率低下。因此,需要一种方便、用户友好的工具,可以准确获取昼夜节律基因的节律成分(周期、幅度和相位)。在这里,我们开发了一种名为节律成分分析工具(RCAT)的新分析工具,它具有易于理解的界面,具有一键操作功能,将所有结果显示为表格和图像,并自动将其保存为 CSV 文件。我们使用相对幅度误差(RAE),这是昼夜节律研究领域广泛采用的标准来估计结果的质量。为了说明 RCAT 在不同情况下的分析能力,我们使用 CircaInSilico(一个用于生成合成基因组生物学数据的网络服务器,用于基准测试研究生物节律的统计方法)生成四组具有不同采集间隔和幅度范围的时间序列数据,并使用 RCAT 对其进行分析。为了展示 RCAT 的有效性,我们分析了两组具有时间序列数据的案例研究:一组使用基因表达综合 (GEO) 存储库中的微阵列和 RNA-Seq 数据来识别肝脏中具有显著周期性的核心时钟基因 (CCG),另一组使用 Lumicycle(一种常用的发光计)收集的实时荧光报告数据来计算精确的周期、幅度和相位。在这些示例中,RCAT 在短时间内成功检测到大多数循环样本,并成功计算出准确的节律成分。这些结果表明,RCAT 提高了周期性振荡数据分析的灵活性和便利性。RCAT 可在以下网址免费获得:https://github.com/lzbbest/Rhythmic-Component-Analysis-Tool/releases 。它是一个跨平台软件,不仅可以在 Linux 上运行,还可以在 Win10、Win8 和 Win7 上运行。