Suppr超能文献

在单细胞转录组学中检测节律性基因表达

Detecting Rhythmic Gene Expression in Single-cell Transcriptomics.

作者信息

Xu Bingxian, Ma Dingbang, Abruzzi Katharine, Braun Rosemary

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA.

NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, USA.

出版信息

J Biol Rhythms. 2024 Dec;39(6):581-593. doi: 10.1177/07487304241273182. Epub 2024 Oct 8.

Abstract

An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.

摘要

自主的、可与环境同步的昼夜节律是地球上生命的普遍特征。在多细胞生物中,这种节律由几乎每个细胞中存在的转录-翻译反馈环产生,该反馈环以组织依赖的方式驱动数千个基因的每日表达。识别受昼夜节律控制的基因可以阐明多细胞生物中生理过程的协调机制。如今,单细胞水平的转录组分析为理解细胞水平生物钟的功能提供了前所未有的机会。然而,虽然已经开发了许多循环检测算法来在大量转录组数据中识别受昼夜节律控制的基因,但尚不清楚如何最好地将这些算法应用于单细胞RNA测序数据。在这里,我们对常用的昼夜节律检测方法在应用于单细胞RNA测序数据时的可靠性和效率进行了基准测试。我们的结果为将现有的循环检测方法应用于单细胞领域提供了指导,并阐明了在单细胞数据中进行更稳健、更高效的节律检测的机会。我们还提出了一种结合谐波回归的子采样程序,作为在单细胞环境中检测昼夜节律基因的有效策略。

相似文献

1
Detecting Rhythmic Gene Expression in Single-cell Transcriptomics.
J Biol Rhythms. 2024 Dec;39(6):581-593. doi: 10.1177/07487304241273182. Epub 2024 Oct 8.
2
Detecting Rhythmic Gene Expression in Single Cell Transcriptomics.
bioRxiv. 2024 Aug 11:2023.12.07.570691. doi: 10.1101/2023.12.07.570691.
9
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
Genome Res. 2015 Dec;25(12):1848-59. doi: 10.1101/gr.195404.115. Epub 2015 Oct 20.
10
Regulation of headache response and transcriptomic network by the trigeminal ganglion clock.
Headache. 2024 Feb;64(2):195-210. doi: 10.1111/head.14670. Epub 2024 Jan 30.

引用本文的文献

1
Variational inference of single cell time series.
bioRxiv. 2024 Aug 30:2024.08.29.610389. doi: 10.1101/2024.08.29.610389.

本文引用的文献

2
Defining the age-dependent and tissue-specific circadian transcriptome in male mice.
Cell Rep. 2023 Jan 31;42(1):111982. doi: 10.1016/j.celrep.2022.111982. Epub 2023 Jan 9.
4
Confronting false discoveries in single-cell differential expression.
Nat Commun. 2021 Sep 28;12(1):5692. doi: 10.1038/s41467-021-25960-2.
5
TimeCycle: topology inspired method for the detection of cycling transcripts in circadian time-series data.
Bioinformatics. 2021 Dec 7;37(23):4405-4413. doi: 10.1093/bioinformatics/btab476.
6
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
7
A transcriptomic taxonomy of circadian neurons around the clock.
Elife. 2021 Jan 13;10:e63056. doi: 10.7554/eLife.63056.
10
Methods detecting rhythmic gene expression are biologically relevant only for strong signal.
PLoS Comput Biol. 2020 Mar 17;16(3):e1007666. doi: 10.1371/journal.pcbi.1007666. eCollection 2020 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验