Suppr超能文献

基于质子扩散模型和 Lasso-LSQR 算法的 X 射线发光断层成像。

X-ray luminescence computed tomography using a hybrid proton propagation model and Lasso-LSQR algorithm.

机构信息

The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China.

The School of Information Sciences and Technology, Northwest University, Xi'an, China.

出版信息

J Biophotonics. 2021 Nov;14(11):e202100089. doi: 10.1002/jbio.202100089. Epub 2021 Aug 19.

Abstract

X-ray luminescence computed tomography (XLCT) uses external X-rays for luminescence excitation, which is becoming a promising molecular imaging technique with superb penetration depth and spatial resolution. To achieve the tomographic mapping of luminescence distribution, accurate optical propagation model and suitable reconstruction method are two keys for XLCT, but not satisfied. To overcome the limitation of the single proton propagation model (e.g., DE, SP ), we adopted a hybrid diffusion equation with third order simplified spherical harmonics (DE-SP ) model for XLCT. To enable fast iteration and accurate sparse reconstruction, we also integrated in the inversion optimization, with a novel Least Square QR-factorization based on the Lasso (Lasso-LSQR) algorithm. We first simulated the light propagation in various kinds of organs under DE model and SP model, respectively. By comparison with the Monte Carlo, these tissues can be categorized into two types, namely DE-fitted tissues that include muscle and lung, and SP -fitted tissues including heart, kidney, liver, and stomach. According to the above classification results, we built a hybrid DE-SP model to more accurately describing light transport. Numerical simulations and in vivo experiments illustrated that hybrid DE-SP model achieves superior reconstruction performance in terms of location accuracy, and spatial resolution than DE, and less computational cost than SP . The hybrid DE-SP model materializes a balance between accuracy and efficiency for XLCT.

摘要

X 射线发光计算机断层成像(XLCT)利用外部 X 射线进行发光激发,这正在成为一种很有前途的分子成像技术,具有极好的穿透深度和空间分辨率。为了实现发光分布的层析成像,准确的光学传播模型和合适的重建方法是 XLCT 的两个关键,但还不能令人满意。为了克服单个质子传播模型(例如,DE、SP)的局限性,我们采用了具有三阶简化球谐函数(DE-SP)模型的混合扩散方程用于 XLCT。为了实现快速迭代和准确的稀疏重建,我们还在反演优化中集成了一种新的基于 Lasso 的最小二乘 QR 分解(Lasso-LSQR)算法。我们首先分别模拟了 DE 模型和 SP 模型下各种器官中的光传播。通过与蒙特卡罗模拟的比较,这些组织可以分为两类,即包括肌肉和肺在内的 DE 拟合组织,以及包括心脏、肾脏、肝脏和胃在内的 SP 拟合组织。根据上述分类结果,我们构建了混合 DE-SP 模型以更准确地描述光传输。数值模拟和体内实验表明,混合 DE-SP 模型在位置精度和空间分辨率方面优于 DE,并且计算成本低于 SP。混合 DE-SP 模型实现了 XLCT 在准确性和效率之间的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验