Suppr超能文献

一种基于状态-观测映射的数据同化中自适应协方差调整的局部化图形聚类方法。

A Graph Clustering Approach to Localization for Adaptive Covariance Tuning in Data Assimilation Based on State-Observation Mapping.

作者信息

Cheng Sibo, Argaud Jean-Philippe, Iooss Bertrand, Ponçot Angélique, Lucor Didier

机构信息

EDF R&D, Ile-de-France, France.

CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, Orsay, France.

出版信息

Math Geosci. 2021;53(8):1751-1780. doi: 10.1007/s11004-021-09951-z. Epub 2021 Jun 21.

Abstract

An original graph clustering approach for the efficient localization of error covariances is proposed within an ensemble-variational data assimilation framework. Here, the localization term is very generic and refers to the idea of breaking up a global assimilation into subproblems. This unsupervised localization technique based on a linearized state-observation measure is general and does not rely on any prior information such as relevant spatial scales, empirical cutoff radii or homogeneity assumptions. Localization is performed via graph theory, a branch of mathematics emerging as a powerful approach to capturing complex and highly interconnected Earth and environmental systems in computational geosciences. The novel approach automatically segregates the state and observation variables in an optimal number of clusters, and it is more amenable to scalable data assimilation. The application of this method does not require underlying block-diagonal structures of prior covariance matrices. To address intercluster connectivity, two alternative data adaptations are proposed. Once the localization is completed, a covariance diagnosis and tuning are performed within each cluster, whose contribution is sequentially integrated into the entire covariance matrix. Numerical twin experiment tests show the reduced cost and added flexibility of this approach compared to global covariance tuning, and more accurate results yielded for both observation- and background-error parameter tuning.

摘要

在集合变分数据同化框架内,提出了一种用于有效定位误差协方差的原始图聚类方法。在此,定位项非常通用,指的是将全局同化分解为子问题的概念。这种基于线性化状态观测度量的无监督定位技术具有通用性,不依赖任何先验信息,如相关空间尺度、经验截止半径或均匀性假设。定位通过图论来执行,图论是数学的一个分支,在计算地球科学中已成为一种强大的方法,用于捕捉复杂且高度相互关联的地球和环境系统。该新方法能自动将状态和观测变量分离到最优数量的聚类中,并且更适合可扩展的数据同化。此方法的应用不需要先验协方差矩阵的底层块对角结构。为解决聚类间的连通性问题,提出了两种替代的数据适配方法。一旦完成定位,就在每个聚类内进行协方差诊断和调整,其贡献会依次整合到整个协方差矩阵中。数值孪生实验测试表明,与全局协方差调整相比,该方法成本降低且灵活性增加,在观测误差和背景误差参数调整方面都能产生更准确的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验