监测碳离子束横向位置并检测带电次级碎片:CNAO患者治疗结果
Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO.
作者信息
Toppi Marco, Baroni Guido, Battistoni Giuseppe, Bisogni Maria Giuseppina, Cerello Piergiorgio, Ciocca Mario, De Maria Patrizia, De Simoni Micol, Donetti Marco, Dong Yunsheng, Embriaco Alessia, Ferrero Veronica, Fiorina Elisa, Fischetti Marta, Franciosini Gaia, Kraan Aafke Christine, Luongo Carmela, Malekzadeh Etesam, Magi Marco, Mancini-Terracciano Carlo, Marafini Michela, Mattei Ilaria, Mazzoni Enrico, Mirabelli Riccardo, Mirandola Alfredo, Morrocchi Matteo, Muraro Silvia, Patera Vincenzo, Pennazio Francesco, Schiavi Angelo, Sciubba Adalberto, Solfaroli-Camillocci Elena, Sportelli Giancarlo, Tampellini Sara, Traini Giacomo, Valle Serena Marta, Vischioni Barbara, Vitolo Viviana, Sarti Alessio
机构信息
Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Rome, Italy.
INFN Laboratori Nazionali di Frascati, Frascati, Italy.
出版信息
Front Oncol. 2021 Jun 10;11:601784. doi: 10.3389/fonc.2021.601784. eCollection 2021.
Particle therapy in which deep seated tumours are treated using C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed.
粒子疗法是使用碳离子治疗深部肿瘤(碳离子放射治疗或CIRT),它利用了这种射弹在剂量释放方面的高度适形性、高相对生物有效性和低氧增强比。CIRT的优势促使尝试实施该技术的中心数量迅速增加。为了充分利用在向靶体积输送剂量时可实现的弹道精度,需要一个在线射程验证系统,但目前尚不存在。碳离子束的射程只能通过观察初级束与患者组织相互作用产生的二次辐射来监测,而临床中心尚未采用能够达到所需精度的技术解决方案。检测患者发射的带电二次碎片(主要是质子)是一种有前景的方法,目前正在CNAO的临床试验中进行探索。带电粒子易于检测,并且可以在几乎无背景的环境中高效地回溯到发射点。这些碎片是射弹碎片化的产物,因此主要在患者体内的束路径上产生。这种实验特征可用于监测束在与其飞行方向正交平面内的位置,为临床中心使用的束横向位置监测室提供在线反馈。每当需要时,该信息可用于交叉检查、验证和校准大多数临床中心已作为束控制探测器实施的离子室提供的信息。在本文中,我们研究了这种策略在临床常规中的可行性,分析了在CNAO设施对使用碳离子治疗并使用INSIDE项目开发的剂量剖析仪(DP)探测器进行监测的患者进行临床试验期间收集的数据。基于监测三名患者收集的数据,将讨论该技术的潜力和局限性。
相似文献
引用本文的文献
Prog Part Nucl Phys. 2023-7
本文引用的文献
Front Oncol. 2020-2-4
Phys Med Biol. 2018-7-17
Phys Med Biol. 2017-12-19