Chapelle Frédéric, Manciet Lucie, Pereira Bruno, Sontheimer Anna, Coste Jérôme, El Ouadih Youssef, Cimpeanu Ruxandra, Gouot Dimitri, Lapusta Yuri, Claise Béatrice, Sautou Valérie, Bouattour Yassine, Marques Ana, Wohrer Adrien, Lemaire Jean-Jacques
Sigma Clermont, Clermont Auvergne Institut National Polytechnique, Clermont-Ferrand, France.
Université Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne Institut National Polytechnique, Institut Pascal, Clermont-Ferrand, France.
Front Bioeng Biotechnol. 2021 Jun 11;9:657875. doi: 10.3389/fbioe.2021.657875. eCollection 2021.
Although deep brain stimulation is nowadays performed worldwide, the biomechanical aspects of electrode implantation received little attention, mainly as physicians focused on the medical aspects, such as the optimal indication of the surgical procedure, the positive and adverse effects, and the long-term follow-up. We aimed to describe electrode deformations and brain shift immediately after implantation, as it may highlight our comprehension of intracranial and intracerebral mechanics.
Sixty electrodes of 30 patients suffering from severe symptoms of Parkinson's disease and essential tremor were studied. They consisted of 30 non-directional electrodes and 30 directional electrodes, implanted 42 times in the subthalamus and 18 times in the ventrolateral thalamus. We computed the x (transversal), y (anteroposterior), z (depth), torsion, and curvature deformations, along the electrodes from the entrance point in the braincase. The electrodes were modelized from the immediate postoperative CT scan using automatic voxel thresholding segmentation, manual subtraction of artifacts, and automatic skeletonization. The deformation parameters were computed from the curve of electrodes using a third-order polynomial regression. We studied these deformations according to the type of electrodes, the clinical parameters, the surgical-related accuracy, the brain shift, the hemisphere and three tissue layers, the gyration layer, the white matter stem layer, and the deep brain layer (type I error set at 5%).
We found that the implanted first hemisphere coupled to the brain shift and the stiffness of the type of electrode impacted on the electrode deformations. The deformations were also different according to the tissue layers, to the electrode type, and to the first-hemisphere-brain-shift effect.
Our findings provide information on the intracranial and brain biomechanics and should help further developments on intracerebral electrode design and surgical issues.
尽管如今全球都在进行深部脑刺激手术,但电极植入的生物力学方面却很少受到关注,主要是因为医生们专注于医学方面,如手术的最佳适应症、正负效应以及长期随访。我们旨在描述植入后立即出现的电极变形和脑移位情况,因为这可能会加深我们对颅内和脑内力学的理解。
对30例患有帕金森病和特发性震颤严重症状患者的60根电极进行了研究。其中包括30根无定向电极和30根定向电极,分别在丘脑底核植入42次,在丘脑腹外侧核植入18次。我们计算了从颅骨入口点沿电极的x(横向)、y(前后)、z(深度)、扭转和曲率变形。使用自动体素阈值分割、人工去除伪影和自动骨架化技术,根据术后即刻CT扫描对电极进行建模。使用三阶多项式回归从电极曲线计算变形参数。我们根据电极类型、临床参数、手术相关精度、脑移位、半球和三个组织层(回旋层、白质干层和深部脑层)研究了这些变形(I型错误设定为5%)。
我们发现植入的首个半球与脑移位相关,电极类型的刚度会影响电极变形。根据组织层、电极类型和首个半球 - 脑移位效应,变形也有所不同。
我们的研究结果提供了有关颅内和脑生物力学的信息,应有助于脑内电极设计和手术问题的进一步发展。