Suppr超能文献

工程化基于噬菌体的生物正交纳米机器人用于超灵敏细菌检测。

Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, Bacteria Detection.

作者信息

Zurier Hannah S, Duong Michelle M, Goddard Julie M, Nugen Sam R

机构信息

Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States.

出版信息

ACS Appl Bio Mater. 2020 Sep 21;3(9):5824-5831. doi: 10.1021/acsabm.0c00546. Epub 2020 Jun 23.

Abstract

Advances in synthetic biology, nanotechnology, and genetic engineering are allowing parallel advances in areas such as drug delivery and rapid diagnostics. Although our current visions of nanobots may be far off, a generation of nanobots synthesized by engineering viruses is approaching. Such tools can be used to solve complex problems where current methods do not meet current demands. Assuring safe drinking water is crucial for minimizing the spread of waterborne illnesses. Although extremely low levels of fecal contamination in drinking water are sufficient to cause a public health risk, it remains challenging to rapidly detect , the standard fecal indicator organism. Current methods sensitive enough to meet regulatory standards suffer from either prohibitively long incubation times or requirement of expensive, impractical equipment. Bacteriophages, tuned by billions of years of evolution to bind viable bacteria and readily engineered to produce custom proteins, are uniquely suited to bacterial detection. We have developed a biosensor platform based on magnetized phages encoding luminescent reporter enzymes. This system utilizes bio-orthogonally functionalized phages to enable site-specific conjugation to magnetic nanoparticles. The resulting phage-based nanobots, when combined with standard, portable field equipment, allow for detection of <10 cfu/100 mL of viable within 7 h, faster than any methods published to date.

摘要

合成生物学、纳米技术和基因工程的进展使得药物递送和快速诊断等领域也取得了相应进展。尽管我们目前对纳米机器人的设想可能还很遥远,但通过工程病毒合成的一代纳米机器人正在逐渐出现。这些工具可用于解决当前方法无法满足当前需求的复杂问题。确保安全饮用水对于最大限度地减少水源性疾病的传播至关重要。尽管饮用水中极低水平的粪便污染就足以造成公共卫生风险,但快速检测标准粪便指示生物仍然具有挑战性。目前灵敏度足以满足监管标准的方法要么孵育时间过长,要么需要昂贵且不实用的设备。经过数十亿年进化调整以结合活细菌并易于工程改造以产生定制蛋白质的噬菌体,特别适合用于细菌检测。我们开发了一种基于编码发光报告酶的磁化噬菌体的生物传感器平台。该系统利用生物正交功能化的噬菌体实现与磁性纳米颗粒的位点特异性结合。由此产生的基于噬菌体的纳米机器人与标准的便携式现场设备相结合,能够在7小时内检测出每100毫升饮用水中<10个菌落形成单位的活菌,比迄今为止公布的任何方法都要快。

相似文献

引用本文的文献

1
Micro- and Nano-Bots for Infection Control.用于感染控制的微型和纳米机器人。
Adv Mater. 2025 Jun;37(24):e2419155. doi: 10.1002/adma.202419155. Epub 2025 Apr 10.
3
Advance on Engineering of Bacteriophages by Synthetic Biology.合成生物学在噬菌体工程方面的进展。
Infect Drug Resist. 2023 Mar 31;16:1941-1953. doi: 10.2147/IDR.S402962. eCollection 2023.
6
Capsid Engineering of Bacteriophages for Oriented Surface Conjugation.噬菌体衣壳工程用于定向表面偶联。
ACS Appl Bio Mater. 2022 Nov 21;5(11):5104-5112. doi: 10.1021/acsabm.2c00428. Epub 2022 Oct 20.
8
Bacteriophage Capsid Modification by Genetic and Chemical Methods.噬菌体衣壳修饰的遗传和化学方法。
Bioconjug Chem. 2021 Mar 17;32(3):466-481. doi: 10.1021/acs.bioconjchem.1c00018. Epub 2021 Mar 4.

本文引用的文献

6
Nanosensors for water quality monitoring.用于水质监测的纳米传感器。
Nat Nanotechnol. 2018 Aug;13(8):651-660. doi: 10.1038/s41565-018-0209-9. Epub 2018 Aug 6.
8
Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.利用CRISPR-Cas9对噬菌体T4基因组进行工程改造
ACS Synth Biol. 2017 Oct 20;6(10):1952-1961. doi: 10.1021/acssynbio.7b00179. Epub 2017 Jul 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验