Department of Food Science, Cornell University, Ithaca, New York 14853, United States.
Bioconjug Chem. 2021 Mar 17;32(3):466-481. doi: 10.1021/acs.bioconjchem.1c00018. Epub 2021 Mar 4.
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
噬菌体是病毒,它们在自然界中的普遍性和对宿主细菌的显著特异性使农业和公共卫生领域具有令人印象深刻且不断发展的可调生物技术。噬菌体衣壳容纳和保护其核酸,已经通过一系列功能(例如荧光团、纳米颗粒、抗原、药物)进行了修饰,以适应其最终应用。噬菌体衣壳上天然存在的官能团可用于静电吸附或生物偶联,但它们的不稳定性和较差的特异性可能导致覆盖范围和功能不一致。为了克服这些限制,研究人员探索了遗传和化学修饰方法,以实现噬菌体衣壳与其目标缀合物之间的强、特异性结合。遗传修饰方法涉及将替代氨基酸、肽或蛋白质序列的基因引入噬菌体基因组或宿主质粒上的衣壳基因中,以促进重组噬菌体的生成。化学修饰方法依赖于在适当的溶液 pH 和盐条件下,使衣壳上存在的官能团与活化的缀合物反应。本文综述了遗传和化学噬菌体衣壳修饰方法的最新进展,确定了方法的主要优缺点,并讨论了推动噬菌体技术在生物传感器、疫苗、治疗剂和纳米载体开发方面发展所需的研究领域。