Suppr超能文献

生物多样性指数在土地利用优先级划分中应用时未被充分研究的变化所带来的后果。

Consequences of underexplored variation in biodiversity indices used for land-use prioritization.

机构信息

Princeton School of Public and International Affairs, Princeton University, Princeton,, New Jersey, USA.

Graduate School of Geography, Clark University, Worcester, Massachusetts, USA.

出版信息

Ecol Appl. 2021 Oct;31(7):e02396. doi: 10.1002/eap.2396. Epub 2021 Jul 28.

Abstract

For biodiversity protection to play a persuasive role in land-use planning, conservationists must be able to offer objective systems for ranking which natural areas to protect or convert. Representing biodiversity in spatially explicit indices is challenging because it entails numerous judgments regarding what variables to measure, how to measure them, and how to combine them. Surprisingly few studies have explored this variation. Here, we explore how this variation affects which areas are selected for agricultural conversion by a land-use prioritization model designed to reduce the biodiversity losses associated with agricultural expansion in Zambia. We first explore the similarity between model recommendations generated by three recently published composite indices and a commonly used rarity-weighted species richness metric. We then explore four underlying sources of ecological and methodological variation within these and other approaches, including different terrestrial vertebrate taxonomic groups, different species-richness metrics, different mathematical methods for combining layers, and different spatial resolutions of inputs. The results generated using different biodiversity approaches show very low spatial agreement regarding which areas to convert to agriculture. There is little overlap in areas identified for conversion using previously published indices (mean Jaccard similarity, J , between 0.3 and 3.7%), different taxonomic groups (5.0% < mean J  < 13.5%), or different measures of species richness (15.6% < mean J  < 33.7%). Even with shared conservation goals, different methods for combining layers and different input spatial resolutions still produce meaningful, though smaller, differences among areas selected for conversion (40.9% < mean J  < 67.5%). The choice of taxonomic group had the largest effect on conservation priorities, followed by the choice of species richness metric, the choice of combination method, and finally the choice of spatial resolution. These disagreements highlight the challenge of objectively representing biodiversity in land-use planning tools, and present a credibility challenge for conservation scientists seeking to inform policy making. Our results suggest an urgent need for a more consistent and transparent framework for designing the biodiversity indices used in land-use planning, which we propose here.

摘要

为了使生物多样性保护在土地利用规划中发挥说服力,自然资源保护主义者必须能够提供客观的系统,对需要保护或转换的自然区域进行排序。在空间上明确表示生物多样性具有挑战性,因为它需要对要测量的变量、如何测量以及如何组合变量做出许多判断。令人惊讶的是,很少有研究探讨这种变化。在这里,我们探讨了这种变化如何影响土地利用优先级模型选择的农业转换区域,该模型旨在减少赞比亚农业扩张相关的生物多样性损失。我们首先探讨了三种最近发表的综合指数和常用稀有物种丰富度指标生成的模型建议之间的相似性。然后,我们探讨了这些方法和其他方法中存在的四个生态和方法学差异的潜在来源,包括不同的陆地脊椎动物分类群、不同的物种丰富度指标、不同的组合层数学方法以及不同的输入空间分辨率。使用不同生物多样性方法生成的结果表明,关于要转换为农业的区域,其空间一致性非常低。使用以前发表的指数(Jaccard 相似性,J,介于 0.3 和 3.7%)、不同的分类群(5.0%<J<13.5%)或不同的物种丰富度指标(15.6%<J<33.7%)确定的转换区域几乎没有重叠。即使具有共同的保护目标,不同的层组合方法和不同的输入空间分辨率仍然会对选择转换的区域产生有意义的差异(40.9%<J<67.5%)。分类群的选择对保护优先级的影响最大,其次是物种丰富度指标的选择、组合方法的选择以及空间分辨率的选择。这些分歧突显了在土地利用规划工具中客观表示生物多样性的挑战,并对寻求为政策制定提供信息的自然资源保护科学家提出了可信度挑战。我们的研究结果表明,迫切需要为土地利用规划中使用的生物多样性指数设计一个更一致和透明的框架,我们在此提出了这个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验