Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.
ACS Nano. 2021 Jul 27;15(7):12388-12404. doi: 10.1021/acsnano.1c04500. Epub 2021 Jun 28.
Intracellular vesicle trafficking involves a complex series of biological pathways used to sort, recycle, and degrade extracellular components, including engineered nanomaterials (ENMs) which gain cellular entry active endocytic processes. A recent emphasis on routes of ENM uptake has established key physicochemical properties which direct certain mechanisms, yet relatively few studies have identified their effect on intracellular trafficking processes past entry and initial subcellular localization. Here, we developed and applied an approach where single-walled carbon nanotubes (SWCNTs) play a dual role-that of an ENM undergoing intracellular processing, in addition to functioning as the signal transduction element reporting these events in individual cells with single organelle resolution. We used the exceptional optical properties exhibited by noncovalent hybrids of single-stranded DNA and SWCNTs (DNA-SWCNTs) to report the progression of intracellular processing events two orthogonal hyperspectral imaging approaches of near-infrared (NIR) fluorescence and resonance Raman scattering. A positive correlation between fluorescence and G-band intensities was uncovered within single cells, while exciton energy transfer and eventual aggregation of DNA-SWCNTs were observed to scale with increasing time after internalization. An analysis pipeline was developed to colocalize and deconvolute the fluorescence and Raman spectra of subcellular regions of interest (ROIs), allowing for single-chirality component spectra to be obtained with submicron spatial resolution. This approach uncovered correlations between DNA-SWCNT concentration, dielectric modulation, and irreversible aggregation within single intracellular vesicles. An immunofluorescence assay was designed to directly observe the DNA-SWCNTs in labeled endosomal vesicles, revealing a distinct relationship between the physical state of organelle-bound DNA-SWCNTs and the dynamic luminal conditions during endosomal maturation processes. Finally, we trained a machine learning algorithm to predict endosome type using the Raman spectra of the vesicle-bound DNA-SWCNTs, enabling major components in the endocytic pathway to be simultaneously visualized using a single intracellular reporter.
细胞内囊泡运输涉及一系列复杂的生物途径,用于对包括工程纳米材料(ENMs)在内的细胞外成分进行分类、回收和降解,ENMs 通过主动内吞作用进入细胞。最近对 ENM 摄取途径的强调确定了指导某些机制的关键物理化学性质,但相对较少的研究已经确定了它们对进入和初始亚细胞定位后细胞内运输过程的影响。在这里,我们开发并应用了一种方法,其中单壁碳纳米管(SWCNT)发挥双重作用——作为经历细胞内加工的 ENM,此外还作为信号转导元件,以单细胞分辨率报告单个细胞中这些事件。我们利用单链 DNA 和 SWCNT 的非共价杂化体(DNA-SWCNT)表现出的特殊光学性质,通过近红外(NIR)荧光和共振拉曼散射的两种正交高光谱成像方法来报告细胞内加工事件的进展。在单个细胞内发现荧光和 G 带强度之间存在正相关,而观察到 DNA-SWCNT 的激子能量转移和最终聚集与内化后时间的增加成正比。开发了一种分析管道来共定位和去卷积感兴趣的亚细胞区域(ROI)的荧光和拉曼光谱,从而能够以亚微米空间分辨率获得单手性成分光谱。这种方法揭示了 DNA-SWCNT 浓度、介电调制和单个细胞内囊泡中不可逆聚集之间的相关性。设计了免疫荧光测定法直接观察标记的内体囊泡中的 DNA-SWCNT,揭示了细胞器结合的 DNA-SWCNT 的物理状态与内体成熟过程中腔内腔条件之间的明显关系。最后,我们训练了一个机器学习算法,使用囊泡结合的 DNA-SWCNT 的拉曼光谱来预测内体类型,从而能够使用单个细胞内报告器同时可视化内吞作用途径中的主要成分。