Suppr超能文献

机器学习辅助的近红外光谱指纹图谱用于巨噬细胞表型分析。

Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping.

机构信息

Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States.

出版信息

ACS Nano. 2024 Aug 27;18(34):22874-22887. doi: 10.1021/acsnano.4c03387. Epub 2024 Aug 15.

Abstract

Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of cellular differentiation.

摘要

光谱指纹图谱技术已经成为一种强大的工具,能够识别化学化合物并破译细胞和工程纳米材料中的复杂相互作用。我们使用近红外(NIR)荧光光谱指纹图谱和机器学习技术,揭示了 DNA 功能化单壁碳纳米管(DNA-SWCNT)与活巨噬细胞之间的复杂相互作用,从而能够进行表型区分。利用拉曼显微镜,我们展示了 M1 巨噬细胞与 M2 和原始表型相比,摄取的 DNA-SWCNT 数量统计上更高,缺陷率显著更低。NIR 荧光数据还表明,这些细胞类型的内体环境的独特性导致许多光学特征(例如发射峰强度、中心波长和峰强度比)存在显著差异。这些特征可作为识别不同巨噬细胞表型的独特标记。我们进一步使用基于 SWCNT 荧光数据训练的支持向量机(SVM)模型来识别 M1 和 M2 巨噬细胞,实现了超过 95%的惊人准确性。最后,我们观察到 DNA-SWCNT 复合物的稳定性,受 DNA 序列长度的影响,对于应用(如细胞表型鉴定或使用 AI 技术绘制内体微环境)至关重要。我们的研究结果表明,由于 SWCNT 与内体微环境中的生物分子之间的相互作用增加,较短的 DNA 序列(如 GT)会产生更高的模型准确性(>87%)。这项研究的意义在于为基于纳米材料的细胞识别平台的发展提供了依据,有望在细胞分化的实时监测中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验