Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Microbiologyopen. 2021 Jun;10(3):e1189. doi: 10.1002/mbo3.1189.
Aquatic ecosystems are often stratified, with cyanobacteria in oxic layers and phototrophic sulfur bacteria in anoxic zones. Changes in stratification caused by the global environmental change are an ongoing concern. Increasing understanding of how such aerobic and anaerobic microbial communities, and associated abiotic conditions, respond to multifarious environmental changes is an important endeavor in microbial ecology. Insights can come from observational and experimental studies of naturally occurring stratified aquatic ecosystems, theoretical models of ecological processes, and experimental studies of replicated microbial communities in the laboratory. Here, we demonstrate a laboratory-based approach with small, replicated, and liquid-dominated Winogradsky columns, with distinct oxic/anoxic strata in a highly replicable manner. Our objective was to apply simultaneous global change scenarios (temperature, nutrient addition) on this micro-ecosystem to report how the microbial communities (full-length 16S rRNA gene seq.) and the abiotic conditions (O , H S, TOC) of the oxic/anoxic layer responded to these environmental changes. The composition of the strongly stratified microbial communities was greatly affected by temperature and by the interaction of temperature and nutrient addition, demonstrating the need of investigating global change treatments simultaneously. Especially phototrophic sulfur bacteria dominated the water column at higher temperatures and may indicate the presence of alternative stable states. We show that the establishment of such a micro-ecosystem has the potential to test global change scenarios in stratified eutrophic limnic systems.
水生生态系统通常是分层的,蓝细菌存在于含氧层,光合硫细菌存在于缺氧区。全球环境变化引起的分层变化是一个持续存在的问题。越来越多的人了解到,好氧和厌氧微生物群落以及相关的非生物条件如何应对各种环境变化,这是微生物生态学中的一项重要努力。可以通过对自然分层水生生态系统的观测和实验研究、生态过程的理论模型以及实验室中复制微生物群落的实验研究来获得见解。在这里,我们展示了一种基于实验室的方法,使用小型、复制和以液体为主的温格罗夫斯基柱,以高度可复制的方式形成明显的好氧/缺氧层。我们的目标是在这个微生态系统上应用同时发生的全球变化情景(温度、养分添加),报告好氧/缺氧层的微生物群落(全长 16S rRNA 基因序列)和非生物条件(O 、H 、S 、TOC)如何对这些环境变化做出响应。强烈分层的微生物群落的组成受到温度和温度与养分添加相互作用的强烈影响,这表明需要同时调查全球变化处理。特别是,在较高温度下,光合硫细菌主导水柱,这可能表明存在替代稳定状态。我们表明,建立这样一个微生态系统有可能在分层富营养化湖泊系统中测试全球变化情景。