Suppr超能文献

利用成纤维细胞直接转化为神经祖细胞并分化为星形胶质细胞进行神经疾病的体外建模。

In vitro Modeling for Neurological Diseases using Direct Conversion from Fibroblasts to Neuronal Progenitor Cells and Differentiation into Astrocytes.

机构信息

Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital.

Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital; College of Medicine, The Ohio State University;

出版信息

J Vis Exp. 2021 Jun 10(172). doi: 10.3791/62016.

Abstract

Research on neurological disorders focuses primarily on the impact of neurons on disease mechanisms. Limited availability of animal models severely impacts the study of cell type specific contributions to disease. Moreover, animal models usually do not reflect variability in mutations and disease courses seen in human patients. Reprogramming methods for generation of induced pluripotent stem cells (iPSCs) have revolutionized patient specific research and created valuable tools for studying disease mechanisms. However, iPSC technology has disadvantages such as time, labor commitment, clonal selectivity and loss of epigenetic markers. Recent modifications of these methods allow more direct generation of cell lineages or specific cell types, bypassing clonal isolation or a pluripotent stem cell state. We have developed a rapid direct conversion method to generate induced Neuronal Progenitor Cells (iNPCs) from skin fibroblasts utilizing retroviral vectors in combination with neuralizing media. The iNPCs can be differentiated into neurons (iNs) oligodendrocytes (iOs) and astrocytes (iAs). iAs production facilitates rapid drug and disease mechanism testing as differentiation from iNPCs only takes 5 days. Moreover, iAs are easy to work with and are generated in pure populations at large numbers. We developed a highly reproducible co-culture assay using mouse GFP+ neurons and patient derived iAs to evaluate potential therapeutic strategies for numerous neurological and neurodegenerative disorders. Importantly, the iA assays are scalable to 384-well format facilitating the evaluation of multiple small molecules in one plate. This approach allows simultaneous therapeutic evaluation of multiple patient cell lines with diverse genetic background. Easy production and storage of iAs and capacity to screen multiple compounds in one assay renders this methodology adaptable for personalized medicine.

摘要

神经紊乱的研究主要集中在神经元对疾病机制的影响上。动物模型的可用性有限,严重影响了对特定细胞类型对疾病贡献的研究。此外,动物模型通常不能反映人类患者中突变和疾病过程的可变性。诱导多能干细胞(iPSC)的重编程方法彻底改变了患者特异性研究,并为研究疾病机制创造了有价值的工具。然而,iPSC 技术存在时间、劳动力投入、克隆选择性和表观遗传标记丢失等缺点。这些方法的最近改进允许更直接地生成细胞谱系或特定细胞类型,绕过克隆分离或多能干细胞状态。我们开发了一种快速的直接转化方法,利用逆转录病毒载体结合神经化培养基,从皮肤成纤维细胞中生成诱导性神经祖细胞(iNPCs)。iNPCs 可以分化为神经元(iNs)、少突胶质细胞(iOs)和星形胶质细胞(iAs)。iAs 的产生促进了快速的药物和疾病机制测试,因为从 iNPCs 分化仅需 5 天。此外,iAs 易于操作,并且可以大量以纯群体生成。我们开发了一种高度可重复的共培养测定法,使用小鼠 GFP+神经元和患者来源的 iAs 来评估许多神经和神经退行性疾病的潜在治疗策略。重要的是,iA 测定法可扩展到 384 孔格式,有利于在一个板上评估多种小分子。这种方法允许同时对具有不同遗传背景的多个患者细胞系进行治疗评估。iAs 的易于生产和储存以及在一个测定中筛选多种化合物的能力,使这种方法适应个性化医疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验