Sierra-Delgado Julieth Andrea, Sinha-Ray Shrestha, Kaleem Abuzar, Ganjibakhsh Meysam, Parvate Mohini, Powers Samantha, Zhang Xiaojin, Likhite Shibi, Meyer Kathrin
The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
College of Medicine, The Ohio State University, Columbus, OH 43205, USA.
Biology (Basel). 2023 Jun 16;12(6):867. doi: 10.3390/biology12060867.
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
脊髓性肌萎缩症(SMA)是婴儿死亡的主要遗传原因。最常见的SMA形式是由位于5号染色体长臂(5q)上的SMN1基因突变引起的(SMA)。另一方面,IGHMBP2基因突变会导致一系列广泛的疾病,且没有明确的基因型-表型相关性,其中包括1型伴有肌肉窘迫的脊髓性肌萎缩症(SMARD1),这是一种极其罕见的SMA形式,以及夏科-马里-图斯病2S型(CMT2S)。我们优化了一种源自患者的体外模型系统,该系统使我们能够扩展对疾病发病机制和基因功能的研究,以及测试对我们已转化至临床的腺相关病毒(AAV)基因疗法的反应。我们从SMA和SMARD1/CMT2S患者细胞系中生成并鉴定了诱导神经元(iN)。建立细胞系后,我们用AAV9介导的基因疗法(用于SMA的AAV9.SMN(Zolgensma)和用于IGHMBP2疾病的AAV9.IGHMBP2(NCT05152823))处理生成的神经元,以评估对治疗的反应。两种疾病的iN均表现出特征性的短神经突长度和神经元转化缺陷,这在之前的文献中已有iPSC建模报道。SMA iN在体外对AAV9.SMN治疗有反应,显示出形态表型的部分挽救。对于SMARD1/CMT2S iN,在所有疾病细胞系中恢复IGHMBP2后,我们能够观察到神经元神经突长度有所改善,尽管程度各不相同,有些细胞系对治疗的反应比其他细胞系更好。此外,该方案使我们能够对一名疑似SMARD1/CMT2S患者的IGHMBP2基因上一个意义未明的变异进行分类。这项研究将进一步加深对SMA,特别是SMARD1/CMT2S疾病在患者变异情况下的理解,并可能推动急需的新治疗方法的开发。