Suppr超能文献

基于患者来源肿瘤类器官的高通量体外检测方法。

High-Throughput In Vitro Assay using Patient-Derived Tumor Organoids.

机构信息

FUJIFILM Wako Bio Solutions Corporation;

Medical-Industrial Translational Research Center, Fukushima Medical University; Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University.

出版信息

J Vis Exp. 2021 Jun 14(172). doi: 10.3791/62668.

Abstract

Patient-derived tumor organoids (PDOs) are expected to be a preclinical cancer model with better reproducibility of disease than traditional cell culture models. PDOs have been successfully generated from a variety of human tumors to recapitulate the architecture and function of tumor tissue accurately and efficiently. However, PDOs are unsuitable for an in vitro high-throughput assay system (HTS) or cell analysis using 96-well or 384-well plates when evaluating anticancer drugs because they are heterogeneous in size and form large clusters in culture. These cultures and assays use extracellular matrices, such as Matrigel, to create tumor tissue scaffolds. Therefore, PDOs have a low throughput and high cost, and it has been difficult to develop a suitable assay system. To address this issue, a simpler and more accurate HTS was established using PDOs to evaluate the potency of anticancer drugs and immunotherapy. An in vitro HTS was created that uses PDOs established from solid tumors cultured in 384-well plates. An HTS was also developed for assessment of antibody-dependent cellular cytotoxicity activity to represent the immune response using PDOs cultured in 96-well plates.

摘要

患者来源的肿瘤类器官(PDO)有望成为一种临床前癌症模型,比传统的细胞培养模型具有更好的疾病重现性。PDO 已经成功地从各种人类肿瘤中产生,以准确高效地再现肿瘤组织的结构和功能。然而,当评估抗癌药物时,PDO 不适合用于体外高通量检测系统(HTS)或使用 96 孔或 384 孔板的细胞分析,因为它们在大小上存在异质性,并在培养过程中形成大的聚集体。这些培养物和检测使用细胞外基质,如 Matrigel,来创建肿瘤组织支架。因此,PDO 的通量低,成本高,并且很难开发出合适的检测系统。为了解决这个问题,使用 PDO 建立了一种更简单、更准确的 HTS,用于评估抗癌药物和免疫疗法的效力。创建了一种使用在 384 孔板中培养的实体瘤建立的 PDO 的体外 HTS。还开发了一种用于评估抗体依赖性细胞毒性活性的 HTS,使用在 96 孔板中培养的 PDO 来代表免疫反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验