Suppr超能文献

基于正交非负矩阵分解的多光谱文档图像盲分解

Blind Decomposition of Multispectral Document Images Using Orthogonal Nonnegative Matrix Factorization.

作者信息

Rahiche Abderrahmane, Cheriet Mohamed

出版信息

IEEE Trans Image Process. 2021;30:5997-6012. doi: 10.1109/TIP.2021.3088266. Epub 2021 Jul 1.

Abstract

This paper addresses the challenge of Multispectral (MS) document image segmentation, which is an essential step for subsequent document image analysis. Most previous studies have focused only on binary (text/non-text) separation. They also rely on handcrafted features and techniques dedicated to conventional images that do not take advantage of MS images' spectral richness. In this work, we reformulate this task as a source separation problem, whereby we target the blind decomposition of entire MS document images via a new orthogonal nonnegative matrix factorization (ONMF). On the one hand, we incorporate orthogonality constraint as a Riemannian optimization on the Stiefel manifold. On the other hand, based on which factor we impose the orthogonality constraint, i.e., either on the endmember matrix, abundance matrix, or both, we propose three ONMF models to investigate this issue and determine which model is more suitable for this study. Minimizing the three models subject to nonnegativity and orthogonality constraints simultaneously is very challenging. Therefore, we extend the alternating direction method of multipliers scheme to solve them. We evaluated our models on synthetic Hyperspectral (HS) images and real-world MS document images. The experimental results confirm the effectiveness of the proposed models and demonstrate their generalization power compared to state-of-the-art techniques.

摘要

本文探讨了多光谱(MS)文档图像分割的挑战,这是后续文档图像分析的关键步骤。以往大多数研究仅专注于二值(文本/非文本)分离。它们还依赖于专门用于传统图像的手工特征和技术,而没有利用MS图像丰富的光谱信息。在这项工作中,我们将此任务重新表述为一个源分离问题,即通过一种新的正交非负矩阵分解(ONMF)对整个MS文档图像进行盲分解。一方面,我们将正交性约束作为斯蒂费尔流形上的黎曼优化纳入其中。另一方面,基于我们对其施加正交性约束的因子,即要么是端元矩阵、丰度矩阵,要么两者都施加,我们提出了三种ONMF模型来研究这个问题,并确定哪种模型更适合本研究。同时在非负性和正交性约束下最小化这三种模型极具挑战性。因此,我们扩展了乘子交替方向法来求解它们。我们在合成高光谱(HS)图像和真实世界的MS文档图像上对我们的模型进行了评估。实验结果证实了所提出模型的有效性,并展示了它们相较于现有技术的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验