Suppr超能文献

基于互补多源数据的局部低秩图像的高光谱超分辨率

Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data.

出版信息

IEEE Trans Image Process. 2016 Jan;25(1):274-88. doi: 10.1109/TIP.2015.2496263. Epub 2015 Oct 30.

Abstract

Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.

摘要

遥感高光谱图像(HSI)通常具有较低的秩,从某种意义上说,数据属于低维子空间/流形。最近,这一特点被用于融合低空间分辨率 HSI 与高空间分辨率多光谱图像,以获得高分辨率 HSI。大多数方法采用解混或矩阵分解的观点。当光谱信息位于低维子空间/流形中时,这些方法已经取得了最先进的结果。然而,如果完整数据集所跨越的子空间/流形维度很大,即大于多光谱波段的数量,那么这些方法的性能主要会下降,因为基础稀疏回归问题是严重不适定的。在本文中,我们提出了一种局部方法来应对这一困难。从根本上说,我们利用这样一个事实,即真实世界的 HSI 是局部低秩的,也就是说,从给定的空间邻域获取的像素跨越了一个非常低维的子空间/流形,即低于或等于多光谱波段的数量。因此,我们建议将图像划分为补丁,并为每个补丁独立地解决数据融合问题。这样,在每个补丁中,子空间/流形的维度足够低,使得问题不再不适定。我们提出了两种替代方法,通过使用端元诱导算法的局部字典学习来定义高光谱超分辨率。我们还探索了两种定义局部区域的替代方法,使用滑动窗口和二进制分区树。所提出方法的有效性通过合成和半真实数据进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验