Suppr超能文献

用于阿尔茨海默病成像遗传学和全基因组关联分析的 L 正则化方法。

An L Regularization Method for Imaging Genetics and Whole Genome Association Analysis on Alzheimer's Disease.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3677-3684. doi: 10.1109/JBHI.2021.3093027. Epub 2021 Sep 3.

Abstract

Although the neuroimaging measures build a bridge between genetic variants and disease phenotypes, an assessment of single nucleotide variants changes in brain structure and their clinically influence on the progression of Alzheimer's disease remain largely preliminary. Note that each variant has very weak correlation signal to neuroimaging measures or Alzheimer's disease phenotypes. Therefore, traditional sparse regression-based image genetics approaches confront with unresolvable features, relative high regression error or inapplicability of high-dimensional data. Adopting an [Formula: see text] regularization method, we significantly elevate the regression accuracy of imaging genetics compared with group-sparse multitask regression method. With further analysis on the simulation results, we conclude that multiple regression tasks model may be unsuitable for image genetics. In addition, we carried out a whole genome association analysis between genetic variants (about 388 million loci) and phenotypes (cognition normal, mild cognitive impairment and Alzheimer's disease) with using the [Formula: see text] regularization method. After annotating the effect of all variants by Ensembl Variant Effect Predictor (VEP), our method locates 33 missense variants which can explain 40% phenotype variance. Then, we mapped each missense variant to the nearest gene and carried out pathway enrichment analysis. The Notch signaling pathway and Apoptosis pathway have been reported to be related to the formation of Alzheimer's disease.

摘要

虽然神经影像学测量方法在遗传变异和疾病表型之间架起了桥梁,但对大脑结构中单核苷酸变异的评估及其对阿尔茨海默病进展的临床影响仍在很大程度上处于初步阶段。请注意,每个变体与神经影像学测量或阿尔茨海默病表型的相关信号都非常微弱。因此,传统的基于稀疏回归的影像遗传学方法面临着无法解决的特征、相对较高的回归误差或高维数据不适用的问题。通过采用[公式:见文本]正则化方法,我们显著提高了影像遗传学的回归准确性,与基于群组稀疏多任务回归方法相比。通过对模拟结果的进一步分析,我们得出结论,多回归任务模型可能不适合影像遗传学。此外,我们使用[公式:见文本]正则化方法对遗传变异(约 3.88 亿个位点)和表型(认知正常、轻度认知障碍和阿尔茨海默病)进行了全基因组关联分析。在使用 Ensembl Variant Effect Predictor(VEP)注释所有变体的效应后,我们的方法定位到了 33 个错义变体,它们可以解释 40%的表型变异。然后,我们将每个错义变体映射到最近的基因,并进行通路富集分析。Notch 信号通路和细胞凋亡通路已被报道与阿尔茨海默病的形成有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验