College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, P. R. China.
J Bioinform Comput Biol. 2021 Aug;19(4):2150012. doi: 10.1142/S0219720021500128. Epub 2021 May 4.
Neuroimaging genetics has become an important research topic since it can reveal complex associations between genetic variants (i.e. single nucleotide polymorphisms (SNPs) and the structures or functions of the human brain. However, existing kernel mapping is difficult to directly use the sparse representation method in the kernel feature space, which makes it difficult for most existing sparse canonical correlation analysis (SCCA) methods to be directly promoted in the kernel feature space. To bridge this gap, we adopt a novel alternating projected gradient approach, gradient KCCA (gradKCCA) model to develop a powerful model for exploring the intrinsic associations among genetic markers, imaging quantitative traits (QTs) of interest. Specifically, this model solves kernel canonical correlation (KCCA) with an additional constraint that projection directions have pre-images in the original data space, a sparsity-inducing variant of the model is achieved through controlling the [Formula: see text]-norm of the preimages of the projection directions. We evaluate this model using Alzheimer's disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from Alzheimer's disease (AD) risk gene APOE, imaging QTs extracted from structural magnetic resonance imaging (MRI) scans. Our results show that the algorithm not only outperforms the traditional KCCA method in terms of Root Mean Square Error (RMSE) and Correlation Coefficient (CC) but also identify the meaningful and relevant biomarkers of SNPs (e.g. rs157594 and rs405697), which are positively related to right Postcentral and right SupraMarginal brain regions in this study. Empirical results indicate its promising capability in revealing biologically meaningful neuroimaging genetics associations and improving the disease-related mechanistic understanding of AD.
神经影像学遗传学已成为一个重要的研究课题,因为它可以揭示遗传变异(即单核苷酸多态性 (SNP))与人类大脑结构或功能之间的复杂关联。然而,现有的核映射难以直接在核特征空间中使用稀疏表示方法,这使得大多数现有的稀疏典型相关分析 (SCCA) 方法难以直接在核特征空间中推广。为了弥合这一差距,我们采用了一种新颖的交替投影梯度方法,即梯度 KCCA (gradKCCA) 模型,以开发一种强大的模型来探索遗传标记、感兴趣的成像定量性状 (QT) 之间的内在关联。具体来说,该模型通过在原始数据空间中引入投影方向的预图像来解决核典型相关 (KCCA),通过控制投影方向的预图像的 [Formula: see text]-范数来实现模型的稀疏性诱导变体。我们使用阿尔茨海默病神经影像学倡议 (ADNI) 队列来评估该模型,以发现来自阿尔茨海默病 (AD) 风险基因 APOE 的 SNPs 与从结构磁共振成像 (MRI) 扫描中提取的成像 QT 之间的关系。我们的结果表明,该算法不仅在均方根误差 (RMSE) 和相关系数 (CC) 方面优于传统的 KCCA 方法,而且还识别了与 SNPs 相关的有意义和相关的生物标志物(例如 rs157594 和 rs405697),这些标志物与本研究中的右后中央和右缘上回脑区呈正相关。实验结果表明,它在揭示有意义的神经影像学遗传学关联和提高 AD 相关机制理解方面具有很大的潜力。