Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.
Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
J Biol Chem. 2021 Aug;297(2):100921. doi: 10.1016/j.jbc.2021.100921. Epub 2021 Jun 25.
Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3'-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped by either DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigIIIα-catalyzed joining of the SSB. Here we define a direct interaction between the TDP1 catalytic domain and the LigIII DNA-binding domain (DBD) regulated by conformational changes in the unstructured TDP1 N-terminal region induced by phosphorylation and/or alterations in amino acid sequence. Full-length and N-terminally truncated TDP1 are more effective at correcting SSB repair defects in TDP1 null cells compared with full-length TDP1 with amino acid substitutions of an N-terminal serine residue phosphorylated in response to DNA damage. TDP1 forms a stable complex with LigIII, as well as full-length LigIIIα alone or in complex with the DNA repair scaffold protein XRCC1. Small-angle X-ray scattering and negative stain electron microscopy combined with mapping of the interacting regions identified a TDP1/LigIIIα compact dimer of heterodimers in which the two LigIII catalytic cores are positioned in the center, whereas the two TDP1 molecules are located at the edges of the core complex flanked by highly flexible regions that can interact with other repair proteins and SSBs. As TDP1and LigIIIα together repair adducts caused by TOP1 cancer chemotherapy inhibitors, the defined interaction architecture and regulation of this enzyme complex provide insights into a key repair pathway in nonmalignant and cancer cells.
酪氨酸 DNA 磷酸二酯酶 1(TDP1)和 DNA 连接酶 IIIα(LigIIIα)是单链断裂(SSB)修复的关键酶。TDP1 去除 DNA 拓扑异构酶(TOP)1 切割复合物降解后残留的 3'-酪氨酸残基,这些复合物被 DNA 损伤或 TOP1 抑制剂捕获。目前尚不清楚 TDP1 如何与随后的加工和 LigIIIα 催化的 SSB 连接相关联。在这里,我们定义了 TDP1 催化结构域与 LigIII DNA 结合结构域(DBD)之间的直接相互作用,这种相互作用受 TDP1 无规卷曲 N 端区域构象变化的调节,这种构象变化是由磷酸化和/或氨基酸序列改变诱导的。与全长 TDP1 相比,全长和 N 端截短的 TDP1 更有效地纠正 TDP1 缺失细胞中的 SSB 修复缺陷,而全长 TDP1 中的 N 端丝氨酸残基发生了氨基酸取代,该残基在 DNA 损伤后被磷酸化。TDP1 与 LigIII 形成稳定的复合物,也可以与全长 LigIIIα 或与 DNA 修复支架蛋白 XRCC1 形成复合物。小角度 X 射线散射和负染色电子显微镜结合相互作用区域的映射确定了 TDP1/LigIIIα 紧凑二聚体的异二聚体,其中两个 LigIII 催化核心位于中心,而两个 TDP1 分子位于核心复合物的边缘,两侧是高度灵活的区域,这些区域可以与其他修复蛋白和 SSB 相互作用。由于 TDP1 和 LigIIIα 一起修复由 TOP1 癌症化疗抑制剂引起的加合物,因此该酶复合物的定义的相互作用结构和调节为非恶性和癌细胞中的关键修复途径提供了深入的了解。