Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado.
Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
J Biol Rhythms. 2021 Aug;36(4):369-383. doi: 10.1177/07487304211025402. Epub 2021 Jun 28.
Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly ( < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 ; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 ; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.
测量个体的生物钟相位对于诊断和治疗昼夜节律睡眠-觉醒障碍和昼夜节律失调、为时间疗法提供信息以及推进生物钟科学都很重要。使用血液转录组学预测生物钟相位标志物褪黑素分泌起始时间(DLMO)的初步研究结果显示出前景。然而,使用代谢组学预测 DLMO 的尝试有限,也没有已知的基于组学的生物标志物可以预测暗光褪黑素关闭时间(DLMOff)。我们分析了充足和不足睡眠期间的人类血浆代谢组,以使用一份血样预测 DLMO 和 DLMOff。16 名(8 名男性/8 名女性)年龄为 22.4 ± 4.8 岁(均值 ± 标准差)的健康参与者完成了一项实验室研究,其中包括 3 天的基线(每晚 9 小时的睡眠机会),随后是持续 5 天的随机交叉协议,其中包括 9 小时充足睡眠和 5 小时不足睡眠条件。在每个条件的最后 24 小时内每小时采集一次血液,以独立确定 DLMO 和 DLMOff。每 4 小时采集一次的血液样本通过非靶向代谢组学进行分析,并随机分为训练集(68%)和测试集(32%)进行生物标志物分析。在训练集中使用偏最小二乘回归建立 DLMO 和 DLMOff 生物标志物模型,然后使用测试集进行性能评估。在基线时,DLMOff 模型显示出最高的性能(0.91 和 1.1 ± 1.1 h 中位数绝对误差 ± 四分位间距 [MdAE ± IQR]),与 DLMO 模型相比,预测误差显著降低(< 0.01)。当将所有条件(基线、9 小时和 5 小时)纳入性能分析时,DLMO(0.60;2.2 ± 2.8 h MdAE;44%的样本误差在 2 小时以内)和 DLMOff(0.62;1.8 ± 2.6 h MdAE;51%的样本误差在 2 小时以内)模型在统计学上没有差异。这些发现为基于代谢组学的生物钟相位生物标志物提供了希望,并强调需要测试在不同生理条件下预测多个生物钟相位标志物的生物标志物。