Suppr超能文献

基于血浆代谢组学的人体昼夜节律相位初步生物标志物的鉴定。

Identification of a Preliminary Plasma Metabolome-based Biomarker for Circadian Phase in Humans.

机构信息

Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado.

Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.

出版信息

J Biol Rhythms. 2021 Aug;36(4):369-383. doi: 10.1177/07487304211025402. Epub 2021 Jun 28.

Abstract

Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly ( < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 ; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 ; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.

摘要

测量个体的生物钟相位对于诊断和治疗昼夜节律睡眠-觉醒障碍和昼夜节律失调、为时间疗法提供信息以及推进生物钟科学都很重要。使用血液转录组学预测生物钟相位标志物褪黑素分泌起始时间(DLMO)的初步研究结果显示出前景。然而,使用代谢组学预测 DLMO 的尝试有限,也没有已知的基于组学的生物标志物可以预测暗光褪黑素关闭时间(DLMOff)。我们分析了充足和不足睡眠期间的人类血浆代谢组,以使用一份血样预测 DLMO 和 DLMOff。16 名(8 名男性/8 名女性)年龄为 22.4 ± 4.8 岁(均值 ± 标准差)的健康参与者完成了一项实验室研究,其中包括 3 天的基线(每晚 9 小时的睡眠机会),随后是持续 5 天的随机交叉协议,其中包括 9 小时充足睡眠和 5 小时不足睡眠条件。在每个条件的最后 24 小时内每小时采集一次血液,以独立确定 DLMO 和 DLMOff。每 4 小时采集一次的血液样本通过非靶向代谢组学进行分析,并随机分为训练集(68%)和测试集(32%)进行生物标志物分析。在训练集中使用偏最小二乘回归建立 DLMO 和 DLMOff 生物标志物模型,然后使用测试集进行性能评估。在基线时,DLMOff 模型显示出最高的性能(0.91 和 1.1 ± 1.1 h 中位数绝对误差 ± 四分位间距 [MdAE ± IQR]),与 DLMO 模型相比,预测误差显著降低(< 0.01)。当将所有条件(基线、9 小时和 5 小时)纳入性能分析时,DLMO(0.60;2.2 ± 2.8 h MdAE;44%的样本误差在 2 小时以内)和 DLMOff(0.62;1.8 ± 2.6 h MdAE;51%的样本误差在 2 小时以内)模型在统计学上没有差异。这些发现为基于代谢组学的生物钟相位生物标志物提供了希望,并强调需要测试在不同生理条件下预测多个生物钟相位标志物的生物标志物。

相似文献

1
Identification of a Preliminary Plasma Metabolome-based Biomarker for Circadian Phase in Humans.
J Biol Rhythms. 2021 Aug;36(4):369-383. doi: 10.1177/07487304211025402. Epub 2021 Jun 28.
7
Comparing the Morningness-Eveningness Questionnaire and Munich ChronoType Questionnaire to the Dim Light Melatonin Onset.
J Biol Rhythms. 2015 Oct;30(5):449-53. doi: 10.1177/0748730415597520. Epub 2015 Aug 4.
10
Why the dim light melatonin onset (DLMO) should be measured before treatment of patients with circadian rhythm sleep disorders.
Sleep Med Rev. 2014 Aug;18(4):333-9. doi: 10.1016/j.smrv.2013.12.001. Epub 2013 Dec 10.

引用本文的文献

1
Advancing Chrononutrition for Cardiometabolic Health: A 2023 National Heart, Lung, and Blood Institute Workshop Report.
J Am Heart Assoc. 2025 May 6;14(9):e039373. doi: 10.1161/JAHA.124.039373. Epub 2025 Apr 23.
2
Feasibility of an At-Home Experimental Circadian Misalignment Induction for Adolescents.
Clocks Sleep. 2025 Jan 28;7(1):4. doi: 10.3390/clockssleep7010004.
5
Circadian protein expression patterns in healthy young adults.
Sleep Health. 2024 Feb;10(1S):S41-S51. doi: 10.1016/j.sleh.2023.10.005. Epub 2023 Dec 11.
6
Current Considerations in the Diagnosis and Treatment of Circadian Rhythm Sleep-Wake Disorders in Children.
Semin Pediatr Neurol. 2023 Dec;48:101091. doi: 10.1016/j.spen.2023.101091. Epub 2023 Oct 3.
8
Machine learning estimation of human body time using metabolomic profiling.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2212685120. doi: 10.1073/pnas.2212685120. Epub 2023 Apr 24.
9
Integrative Analysis of Rhythmicity: From Biology to Urban Environments and Sustainability.
Int J Environ Res Public Health. 2022 Dec 31;20(1):764. doi: 10.3390/ijerph20010764.
10
Human Health during Space Travel: State-of-the-Art Review.
Cells. 2022 Dec 22;12(1):40. doi: 10.3390/cells12010040.

本文引用的文献

1
Sleep and Circadian Disruption and the Gut Microbiome-Possible Links to Dysregulated Metabolism.
Curr Opin Endocr Metab Res. 2021 Apr;17:26-37. doi: 10.1016/j.coemr.2020.11.009. Epub 2020 Nov 28.
2
Workshop report. Circadian rhythm sleep-wake disorders: gaps and opportunities.
Sleep. 2021 May 14;44(5). doi: 10.1093/sleep/zsaa281.
4
Novel Approaches for Assessing Circadian Rhythmicity in Humans: A Review.
J Biol Rhythms. 2020 Oct;35(5):421-438. doi: 10.1177/0748730420940483. Epub 2020 Jul 23.
5
Differences in plasma metabolites related to Alzheimer's disease, ε4 status, and ethnicity.
Alzheimers Dement (N Y). 2020 May 6;6(1):e12025. doi: 10.1002/trc2.12025. eCollection 2020.
6
Health consequences of circadian disruption.
Sleep. 2020 Jan 13;43(1). doi: 10.1093/sleep/zsz194.
7
Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes.
Diabetologia. 2020 Mar;63(3):462-472. doi: 10.1007/s00125-019-05059-6. Epub 2020 Jan 8.
10
Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial.
Eur Heart J. 2020 Dec 21;41(48):4565-4576. doi: 10.1093/eurheartj/ehz754.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验