Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
Am J Clin Pathol. 2021 Nov 8;156(6):1142-1148. doi: 10.1093/ajcp/aqab086.
Chronic myelogenous leukemia (CML) is a clonal stem cell disorder accounting for 15% of adult leukemias. We aimed to determine if machine learning models could predict CML using blood cell counts prior to diagnosis.
We identified patients with a diagnostic test for CML (BCR-ABL1) and at least 6 consecutive prior years of differential blood cell counts between 1999 and 2020 in the largest integrated health care system in the United States. Blood cell counts from different time periods prior to CML diagnostic testing were used to train, validate, and test machine learning models.
The sample included 1,623 patients with BCR-ABL1 positivity rate 6.2%. The predictive ability of machine learning models improved when trained with blood cell counts closer to time of diagnosis: 2 to 5 years area under the curve (AUC), 0.59 to 0.67, 0.5 to 1 years AUC, 0.75 to 0.80, at diagnosis AUC, 0.87 to 0.92.
Blood cell counts collected up to 5 years prior to diagnostic workup of CML successfully predicted the BCR-ABL1 test result. These findings suggest a machine learning model trained with blood cell counts could lead to diagnosis of CML earlier in the disease course compared to usual medical care.
慢性髓性白血病(CML)是一种克隆性干细胞疾病,占成人白血病的 15%。我们旨在确定机器学习模型是否可以使用诊断前的血细胞计数来预测 CML。
我们在美国最大的综合医疗保健系统中,确定了患有 CML(BCR-ABL1)诊断测试且在 1999 年至 2020 年间至少有 6 年连续的不同血细胞计数的患者。在 CML 诊断测试之前的不同时间段的血细胞计数用于训练、验证和测试机器学习模型。
该样本包括 1623 名 BCR-ABL1 阳性率为 6.2%的患者。当使用更接近诊断时间的血细胞计数进行训练时,机器学习模型的预测能力有所提高:2 至 5 年 AUC,0.59 至 0.67,0.5 至 1 年 AUC,0.75 至 0.80,诊断时 AUC,0.87 至 0.92。
在对 CML 进行诊断性检查之前收集的血细胞计数可成功预测 BCR-ABL1 检测结果。这些发现表明,与常规医疗相比,使用血细胞计数训练的机器学习模型可以更早地诊断 CML。