Suppr超能文献

人工智能在慢性髓细胞白血病(CML)疾病预测和管理中的应用:范围综述。

Application of artificial intelligence in chronic myeloid leukemia (CML) disease prediction and management: a scoping review.

机构信息

Faculty of Medical Sciences, Birjand university of medical sciences, Birjand, Iran.

Department of Artificial intelligence, Smart University of Medical Sciences, Tehran, Iran.

出版信息

BMC Cancer. 2024 Aug 20;24(1):1026. doi: 10.1186/s12885-024-12764-y.

Abstract

BACKGROUND

Navigating the complexity of chronic myeloid leukemia (CML) diagnosis and management poses significant challenges, including the need for accurate prediction of disease progression and response to treatment. Artificial intelligence (AI) presents a transformative approach that enables the development of sophisticated predictive models and personalized treatment strategies that enhance early detection and improve therapeutic interventions for better patient outcomes.

METHODS

An extensive search was conducted to retrieve relevant articles from PubMed, Scopus, and Web of Science databases up to April 24, 2023. Data were collected using a standardized extraction form, and the results are presented in tables and graphs, showing frequencies and percentages. The authors adhered to the PRISMA-ScR checklist to ensure transparent reporting of the study.

RESULTS

Of the 176 articles initially identified, 12 were selected for our study after removing duplicates and applying the inclusion and exclusion criteria. AI's primary applications of AI in managing CML included tumor diagnosis/classification (n = 9, 75%), prediction/prognosis (n = 2, 17%), and treatment (n = 1, 8%). For tumor diagnosis, AI is categorized into blood smear image-based (n = 5), clinical parameter-based (n = 2), and gene profiling-based (n = 2) approaches. The most commonly employed AI models include Support Vector Machine (SVM) (n = 5), eXtreme Gradient Boosting (XGBoost) (n = 4), and various neural network methods, such as Artificial Neural Network (ANN) (n = 3). Furthermore, Hybrid Convolutional Neural Network with Interactive Autodidactic School (HCNN-IAS) achieved 100% accuracy and sensitivity in organizing leukemia data types, whereas MayGAN attained 99.8% accuracy and high performance in diagnosing CML from blood smear images.

CONCLUSIONS

AI offers groundbreaking insights and tools for enhancing prediction, prognosis, and personalized treatment in chronic myeloid leukemia. Integrated AI systems empower healthcare practitioners with advanced analytics, optimizing patient care and improving clinical outcomes in CML management.

摘要

背景

慢性髓性白血病(CML)的诊断和管理非常复杂,需要准确预测疾病的进展和对治疗的反应,这是一个巨大的挑战。人工智能(AI)提供了一种变革性的方法,可以开发复杂的预测模型和个性化的治疗策略,从而实现早期检测,改善治疗干预措施,提高患者的治疗效果。

方法

我们从 PubMed、Scopus 和 Web of Science 数据库中进行了广泛的搜索,截至 2023 年 4 月 24 日,检索到了相关文章。我们使用标准化的提取表格收集数据,结果以表格和图形的形式呈现,显示了频率和百分比。作者遵循 PRISMA-ScR 清单,以确保研究报告的透明度。

结果

在最初确定的 176 篇文章中,我们排除重复内容并应用纳入和排除标准后,选择了 12 篇文章进行研究。AI 在管理 CML 中的主要应用包括肿瘤诊断/分类(n=9,75%)、预测/预后(n=2,17%)和治疗(n=1,8%)。在肿瘤诊断方面,AI 分为基于血涂片图像的(n=5)、基于临床参数的(n=2)和基于基因谱的(n=2)方法。最常使用的 AI 模型包括支持向量机(SVM)(n=5)、极端梯度提升(XGBoost)(n=4)和各种神经网络方法,如人工神经网络(ANN)(n=3)。此外,Hybrid Convolutional Neural Network with Interactive Autodidactic School(HCNN-IAS)在组织白血病数据类型方面实现了 100%的准确性和敏感性,而 MayGAN 在从血涂片图像诊断 CML 方面实现了 99.8%的准确性和高性能。

结论

AI 为增强慢性髓性白血病的预测、预后和个性化治疗提供了开创性的见解和工具。集成的 AI 系统为医疗保健从业者提供了先进的分析工具,优化了患者护理,并改善了 CML 管理的临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5149/11337640/142a9012de8b/12885_2024_12764_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验