Indraprastha Institute of Information Technology, Delhi, India.
Department of Biomedical Engineering, Indian Institute of Technology Ropar, India.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab237.
Dramatic genomic alterations, either inducible or in a pathological state, dismantle the core regulatory networks, leading to the activation of normally silent genes. Despite possessing immense therapeutic potential, accurate detection of these transcripts is an ever-challenging task, as it requires prior knowledge of the physiological gene expression levels. Here, we introduce EcTracker, an R-/Shiny-based single-cell data analysis web server that bestows a plethora of functionalities that collectively enable the quantitative and qualitative assessments of bona fide cell types or tissue-specific transcripts and, conversely, the ectopically expressed genes in the single-cell ribonucleic acid sequencing datasets. Moreover, it also allows regulon analysis to identify the key transcriptional factors regulating the user-selected gene signatures. To demonstrate the EcTracker functionality, we reanalyzed the CRISPR interference (CRISPRi) dataset of the human embryonic stem cells differentiated into endoderm lineage and identified the prominent enrichment of a specific gene signature in the SMAD2 knockout cells whose identity was ambiguous in the original study. The key distinguishing features of EcTracker lie within its processing speed, availability of multiple add-on modules, interactive graphical user interface and comprehensiveness. In summary, EcTracker provides an easy-to-perform, integrative and end-to-end single-cell data analysis platform that allows decoding of cellular identities, identification of ectopically expressed genes and their regulatory networks, and therefore, collectively imparts a novel dimension for analyzing single-cell datasets.
戏剧性的基因组改变,无论是诱导的还是在病理状态下,都会破坏核心调控网络,导致通常沉默的基因被激活。尽管具有巨大的治疗潜力,但准确检测这些转录本是一项极具挑战性的任务,因为它需要预先了解生理基因表达水平。在这里,我们介绍了 EcTracker,这是一个基于 R-/Shiny 的单细胞数据分析网络服务器,它提供了大量的功能,共同实现了对真实细胞类型或组织特异性转录本的定量和定性评估,以及单细胞 RNA 测序数据集中异位表达基因的评估。此外,它还允许调控子分析来识别调节用户选择的基因特征的关键转录因子。为了演示 EcTracker 的功能,我们重新分析了人类胚胎干细胞分化为内胚层谱系的 CRISPR 干扰 (CRISPRi) 数据集,并在原始研究中身份不明确的 SMAD2 敲除细胞中发现了特定基因特征的明显富集。EcTracker 的关键区别特征在于其处理速度、多个附加模块的可用性、交互式图形用户界面和全面性。总之,EcTracker 提供了一个易于执行、集成和端到端的单细胞数据分析平台,允许解码细胞身份、识别异位表达的基因及其调控网络,从而为分析单细胞数据集赋予了新的维度。