Suppr超能文献

单细胞探索者,协作驱动的工具,可利用大规模单细胞 RNA-seq 数据。

Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.

机构信息

Computational Biology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.

Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.

出版信息

BMC Genomics. 2019 Aug 27;20(1):676. doi: 10.1186/s12864-019-6053-y.

Abstract

BACKGROUND

Single cell transcriptome sequencing has become an increasingly valuable technology for dissecting complex biology at a resolution impossible with bulk sequencing. However, the gap between the technical expertise required to effectively work with the resultant high dimensional data and the biological expertise required to interpret the results in their biological context remains incompletely addressed by the currently available tools.

RESULTS

Single Cell Explorer is a Python-based web server application we developed to enable computational and experimental scientists to iteratively and collaboratively annotate cell expression phenotypes within a user-friendly and visually appealing platform. These annotations can be modified and shared by multiple users to allow easy collaboration between computational scientists and experimental biologists. Data processing and analytic workflows can be integrated into the system using Jupyter notebooks. The application enables powerful yet accessible features such as the identification of differential gene expression patterns for user-defined cell populations and convenient annotation of cell types using marker genes or differential gene expression patterns. Users are able to produce plots without needing Python or R coding skills. As such, by making single cell RNA-seq data sharing and querying more user-friendly, the software promotes deeper understanding and innovation by research teams applying single cell transcriptomic approaches.

CONCLUSIONS

Single cell explorer is a freely-available single cell transcriptomic analysis tool that enables computational and experimental biologists to collaboratively explore, annotate, and share results in a flexible software environment and a centralized database server that supports data portal functionality.

摘要

背景

单细胞转录组测序技术已经成为一种非常有价值的技术,可在体测序无法达到的分辨率下解析复杂的生物学。然而,目前可用的工具在有效处理由此产生的高维数据所需的技术专业知识和在生物学背景下解释结果所需的生物学专业知识之间仍存在差距。

结果

Single Cell Explorer 是一个基于 Python 的 Web 服务器应用程序,我们开发它是为了使计算和实验科学家能够在用户友好且具有吸引力的平台上迭代和协作地注释细胞表达表型。这些注释可以由多个用户进行修改和共享,以允许计算科学家和实验生物学家之间轻松协作。可以使用 Jupyter 笔记本将数据处理和分析工作流程集成到系统中。该应用程序具有强大而易于使用的功能,例如识别用户定义的细胞群体的差异基因表达模式,以及使用标记基因或差异基因表达模式方便地注释细胞类型。用户无需 Python 或 R 编码技能即可生成图表。通过使单细胞 RNA-seq 数据共享和查询更加用户友好,该软件促进了应用单细胞转录组学方法的研究团队的深入理解和创新。

结论

Single Cell Explorer 是一个免费的单细胞转录组分析工具,使计算和实验生物学家能够在灵活的软件环境和支持数据门户功能的集中式数据库服务器中协作探索、注释和共享结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2473/6712711/6f7ae2235a7e/12864_2019_6053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验