Department of Physics, Princeton University, Princeton, New Jersey 08544, United States of America.
Department of Physics, University of California, Berkeley, Berkeley CA 94720, United States of America.
Phys Biol. 2021 Aug 12;18(6). doi: 10.1088/1478-3975/ac0fd1.
We introduce a Reed-Frost epidemic model with recursive contact tracing and asymptomatic transmission. This generalizes the branching-process model introduced by the authors in a previous work (Bulchandani et al 2021045004) to finite populations and general contact networks. We simulate the model numerically for two representative examples, the complete graph and the square lattice. On both networks, we observe clear signatures of a contact-tracing phase transition from an 'epidemic phase' to an 'immune phase' as contact-network coverage is increased. We verify that away from the singular line of perfect tracing, the finite-size scaling of the contact-tracing phase transition on each network lies in the corresponding percolation universality class. Finally, we use the model to quantify the efficacy of recursive contact-tracing in regimes where epidemic spread is not contained.
我们引入了一个具有递归接触追踪和无症状传播的里德-弗罗斯特传染病模型。这将作者之前的工作(Bulchandani 等人,2021045004)中引入的分支过程模型推广到了有限群体和一般接触网络中。我们对两个代表性的例子,完全图和正方形晶格,对模型进行了数值模拟。在这两种网络上,随着接触网络覆盖范围的增加,我们观察到了从“传染病阶段”到“免疫阶段”的接触追踪相变的明显特征。我们验证了,在完美追踪的奇异线上,每个网络的接触追踪相变的有限尺寸标度都位于相应的渗流普适类中。最后,我们使用该模型来量化在传染病传播不受控制的情况下,递归接触追踪的效果。