Suppr超能文献

从多组学预测基因调控网络,以将遗传风险变异和神经免疫学与阿尔茨海默病表型联系起来。

Predicting gene regulatory networks from multi-omics to link genetic risk variants and neuroimmunology to Alzheimer's disease phenotypes.

作者信息

Khullar Saniya, Wang Daifeng

出版信息

bioRxiv. 2021 Sep 20:2021.06.21.449165. doi: 10.1101/2021.06.21.449165.

Abstract

BACKGROUND

Genome-wide association studies have found many genetic risk variants associated with Alzheimer's disease (AD). However, how these risk variants affect deeper phenotypes such as disease progression and immune response remains elusive. Also, our understanding of cellular and molecular mechanisms from disease risk variants to various phenotypes is still limited. To address these problems, we performed an integrative multi-omics analysis of genotype, transcriptomics, and epigenomics for revealing gene regulatory mechanisms from disease variants to AD phenotypes.

METHOD

First, given the population gene expression data of a cohort, we construct and cluster its gene co-expression network to identify gene co-expression modules for various AD phenotypes. Next, we predict transcription factors (TFs) regulating co-expressed genes and AD risk SNPs that interrupt TF binding sites on regulatory elements. Finally, we construct a gene regulatory network (GRN) linking SNPs, interrupted TFs, and regulatory elements to target genes and gene modules for each phenotype in the cohort. This network thus provides systematic insights into gene regulatory mechanisms from risk variants to AD phenotypes.

RESULTS

Our analysis predicted GRNs in three major AD-relevant regions: Hippocampus, Dorsolateral Prefrontal Cortex (DLPFC), Lateral Temporal Lobe (LTL). Comparative analyses revealed cross-region-conserved and region-specific GRNs, in which many immunological genes are present. For instance, SNPs rs13404184 and rs61068452 disrupt SPI1 binding and regulation of AD gene INPP5D in the Hippocampus and LTL. However, SNP rs117863556 interrupts bindings of REST to regulate GAB2 in DLPFC only. Driven by emerging neuroinflammation in AD, we used Covid-19 as a proxy to identify possible regulatory mechanisms for neuroimmunology in AD. To this end, we looked at the GRN subnetworks relating to genes from shared AD-Covid pathways. From those subnetworks, our machine learning analysis prioritized the AD-Covid genes for predicting Covid-19 severity. Decision Curve Analysis also validated our AD-Covid genes outperform known Covid-19 genes for classifying severe Covid-19 patients. This suggests AD-Covid genes along with linked SNPs can be potential novel biomarkers for neuroimmunology in AD. Finally, our results are open-source available as a comprehensive functional genomic map for AD, providing a deeper mechanistic understanding of the interplay among multi-omics, brain regions, gene functions like neuroimmunology, and phenotypes.

摘要

背景

全基因组关联研究已经发现了许多与阿尔茨海默病(AD)相关的遗传风险变异。然而,这些风险变异如何影响诸如疾病进展和免疫反应等更深层次的表型仍然不清楚。此外,我们对从疾病风险变异到各种表型的细胞和分子机制的理解仍然有限。为了解决这些问题,我们对基因型、转录组学和表观基因组学进行了综合多组学分析,以揭示从疾病变异到AD表型的基因调控机制。

方法

首先,给定一个队列的群体基因表达数据,我们构建并聚类其基因共表达网络,以识别各种AD表型的基因共表达模块。接下来,我们预测调控共表达基因的转录因子(TFs)以及中断调控元件上TF结合位点的AD风险单核苷酸多态性(SNPs)。最后,我们构建一个基因调控网络(GRN),将SNPs、中断的TFs和调控元件与队列中每种表型的靶基因和基因模块联系起来。因此,这个网络为从风险变异到AD表型的基因调控机制提供了系统的见解。

结果

我们的分析预测了三个主要的AD相关区域的GRNs:海马体、背外侧前额叶皮质(DLPFC)、颞叶外侧(LTL)。比较分析揭示了跨区域保守和区域特异性的GRNs,其中存在许多免疫基因。例如,SNPs rs13404184和rs61068452破坏了海马体和LTL中SPI1对AD基因INPP5D的结合和调控。然而,SNP rs117863556仅中断了REST在DLPFC中对GAB2的结合调控。受AD中出现的神经炎症驱动,我们将新冠病毒病(Covid-19)作为一个替代物来识别AD中神经免疫学的可能调控机制。为此,我们研究了与AD-Covid共同途径中的基因相关的GRN子网。从这些子网中,我们的机器学习分析对用于预测Covid-19严重程度的AD-Covid基因进行了优先排序。决策曲线分析也验证了我们的AD-Covid基因在对重症Covid-19患者进行分类方面优于已知的Covid-19基因。这表明AD-Covid基因以及相关的SNPs可能是AD中神经免疫学的潜在新型生物标志物。最后,我们的结果作为一个全面的AD功能基因组图谱是开源可用的,为多组学、脑区、神经免疫学等基因功能和表型之间的相互作用提供了更深入的机制理解。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验