Suppr超能文献

单细胞网络生物学用于药物重定位和阿尔茨海默病表型预测的细胞类型基因调控特征分析。

Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer's disease.

机构信息

Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2022 Jul 18;18(7):e1010287. doi: 10.1371/journal.pcbi.1010287. eCollection 2022 Jul.

Abstract

Dysregulation of gene expression in Alzheimer's disease (AD) remains elusive, especially at the cell type level. Gene regulatory network, a key molecular mechanism linking transcription factors (TFs) and regulatory elements to govern gene expression, can change across cell types in the human brain and thus serve as a model for studying gene dysregulation in AD. However, AD-induced regulatory changes across brain cell types remains uncharted. To address this, we integrated single-cell multi-omics datasets to predict the gene regulatory networks of four major cell types, excitatory and inhibitory neurons, microglia and oligodendrocytes, in control and AD brains. Importantly, we analyzed and compared the structural and topological features of networks across cell types and examined changes in AD. Our analysis shows that hub TFs are largely common across cell types and AD-related changes are relatively more prominent in some cell types (e.g., microglia). The regulatory logics of enriched network motifs (e.g., feed-forward loops) further uncover cell type-specific TF-TF cooperativities in gene regulation. The cell type networks are also highly modular and several network modules with cell-type-specific expression changes in AD pathology are enriched with AD-risk genes. The further disease-module-drug association analysis suggests cell-type candidate drugs and their potential target genes. Finally, our network-based machine learning analysis systematically prioritized cell type risk genes likely involved in AD. Our strategy is validated using an independent dataset which showed that top ranked genes can predict clinical phenotypes (e.g., cognitive impairment) of AD with reasonable accuracy. Overall, this single-cell network biology analysis provides a comprehensive map linking genes, regulatory networks, cell types and drug targets and reveals cell-type gene dysregulation in AD.

摘要

阿尔茨海默病(AD)中基因表达的失调仍然难以捉摸,尤其是在细胞类型水平上。基因调控网络是连接转录因子(TFs)和调控元件以控制基因表达的关键分子机制,它可以在人类大脑的不同细胞类型中发生变化,因此可以作为研究 AD 中基因失调的模型。然而,AD 诱导的大脑细胞类型之间的调控变化仍然未知。为了解决这个问题,我们整合了单细胞多组学数据集,以预测对照和 AD 大脑中四种主要细胞类型(兴奋性和抑制性神经元、小胶质细胞和少突胶质细胞)的基因调控网络。重要的是,我们分析和比较了跨细胞类型的网络的结构和拓扑特征,并研究了 AD 中的变化。我们的分析表明,枢纽 TF 在很大程度上是跨细胞类型共有的,而 AD 相关的变化在某些细胞类型(例如小胶质细胞)中更为明显。富集网络基序(例如前馈环)的调控逻辑进一步揭示了基因调控中细胞类型特异性 TF-TF 合作。细胞类型网络也高度模块化,AD 病理中具有细胞类型特异性表达变化的几个网络模块富含 AD 风险基因。进一步的疾病模块-药物关联分析表明了细胞类型候选药物及其潜在的靶基因。最后,我们基于网络的机器学习分析系统地优先考虑了可能与 AD 相关的细胞类型风险基因。我们的策略使用独立数据集进行了验证,结果表明排名靠前的基因可以以合理的准确度预测 AD 的临床表型(例如认知障碍)。总的来说,这项单细胞网络生物学分析提供了一个全面的图谱,将基因、调控网络、细胞类型和药物靶标联系起来,并揭示了 AD 中的细胞类型基因失调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/416b/9333448/7e45ffac09c4/pcbi.1010287.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验