Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany.
Lab Chip. 2021 Aug 21;21(16):3174-3183. doi: 10.1039/d1lc00161b. Epub 2021 Jun 30.
The simultaneous separational control of motion of individual objects is vital to achieve high efficiency separation for biological analytes in biomedical applications. Here, we show the selective and directed movement of different populations of microbeads depending on their size in a flowless environment by means of a hexagonally structured soft-magnetic microchip platform. By adjusting strength and asymmetry of a modulated in-plane magnetic field, discrete and switchable movement patterns of two different types of beads above a magnetic surface structure are achieved. Starting from a heterogeneous mixture of bead populations and depending on the type of field sequences, directional forward transport of one type of beads is achieved, while the other bead population is immobilized. Despite significant size and magnetic content distributions within each population of microbeads, high separation efficiencies are demonstrated. The selection and movement processes are supported by full-scale magnetofluidic numerical simulations. The magnetic platform allowing multidirectional and selective microbead movement can greatly contribute to the progress of functional lab-on-chip and future diagnostics devices.
在生物医学应用中,实现对生物分析物的高效分离,对单个物体运动的同时分离控制至关重要。在这里,我们通过六边形结构的软磁微芯片平台展示了在无流动环境中,根据其大小对不同微球群体的选择性和定向运动。通过调整调制面内磁场的强度和非对称性,实现了磁性表面结构上方两种不同类型微球的离散且可切换的运动模式。从微球群体的异质混合物开始,并取决于场序列的类型,实现了一种类型的微球的定向正向传输,而另一种微球群体被固定。尽管每个微球群体的大小和磁含量分布存在显著差异,但仍展示了较高的分离效率。选择和移动过程得到了全尺度磁流控数值模拟的支持。允许多方向和选择性微球运动的磁性平台可以极大地促进功能芯片实验室和未来诊断设备的发展。