Suppr超能文献

基于磁场的微纳尺度下对粒子和细胞的空间操控。

Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces.

机构信息

Institute of Novel Materials and Nanotechnology, National University of Science and Technology MISiS, 119049 Moscow, Russia.

REC "Smart Materials and Biomedical Applications", Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.

出版信息

Cells. 2022 Mar 10;11(6):950. doi: 10.3390/cells11060950.

Abstract

The importance of magnetic micro- and nanoparticles for applications in biomedical technology is widely recognised. Many of these applications, including tissue engineering, cell sorting, biosensors, drug delivery, and lab-on-chip devices, require remote manipulation of magnetic objects. High-gradient magnetic fields generated by micromagnets in the range of 10-10 T/m are sufficient for magnetic forces to overcome other forces caused by viscosity, gravity, and thermal fluctuations. In this paper, various magnetic systems capable of generating magnetic fields with required spatial gradients are analysed. Starting from simple systems of individual magnets and methods of field computation, more advanced magnetic microarrays obtained by lithography patterning of permanent magnets are introduced. More flexible field configurations can be formed with the use of soft magnetic materials magnetised by an external field, which allows control over both temporal and spatial field distributions. As an example, soft magnetic microwires are considered. A very attractive method of field generation is utilising tuneable domain configurations. In this review, we discuss the force requirements and constraints for different areas of application, emphasising the current challenges and how to overcome them.

摘要

磁性微纳米颗粒在生物医学技术中的应用非常重要,这一点已得到广泛认可。许多应用,包括组织工程、细胞分选、生物传感器、药物输送和芯片实验室设备,都需要对磁性物体进行远程操作。微磁铁产生的 10-10 T/m 范围内的高梯度磁场足以使磁力克服由粘性、重力和热波动引起的其他力。在本文中,分析了各种能够产生具有所需空间梯度的磁场的磁性系统。从单个磁铁的简单系统和场计算方法开始,介绍了通过光刻对永磁体进行图案化得到的更先进的磁性微阵列。使用外部磁场磁化的软磁材料可以形成更灵活的场配置,从而可以控制时间和空间的场分布。例如,考虑了软磁微丝。利用可调谐畴结构是一种非常有吸引力的场产生方法。在本综述中,我们讨论了不同应用领域的力要求和限制,强调了当前的挑战以及如何克服这些挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2e6/8946034/cf5040ceb2f7/cells-11-00950-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验