Choi Hong Jin, Ahn Gna, Yu U Seok, Kim Eun Jin, Ahn Ji-Young, Chan Jeong Ok
Department of Digital Anti-Aging Health Care, Inje University - Gimhae Campus, Gimhae 50834, Republic of Korea.
Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea.
ACS Omega. 2023 Jul 27;8(31):28344-28354. doi: 10.1021/acsomega.3c02264. eCollection 2023 Aug 8.
In this study, we developed a pneumatically driven microfluidic platform (PDMFP) operated by a fully automated particle concentration system (FAPCS) for the pretreatment of micro- and nano-sized materials. The proposed PDMFP comprises a 3D network with a curved fluidic chamber and channel, five on/off pneumatic valves for blocking fluid flow, and a sieve valve for sequential trapping of microbeads and target particles. Using this setup, concentrated targets are automatically released into an outlet port. The FAPCS mainly comprises solenoid valves, glass reservoirs, a regulator, pressure sensor, main printed circuit board, and liquid crystal display touch panel. All pneumatic valves in the microfluidic platform as well as the working fluids in the glass reservoirs are controlled using FAPCS. The flow rate of the working fluids is measured to demonstrate the sequential programed operation of the proposed pretreatment process using FAPCS. In our study, we successfully achieved rapid and efficient enrichment using PDMFP-FAPCS with fluorescence-labeled . With pretreatment-10 min for the microbead concentration and 25 min for target binding-almost all the target bacteria could be captured. A total of 526 Gram-negative bacteria were attached to 82 beads, whereas Gram-positive bacteria were attached to only 2 of the 100 beads. Finally, we evaluated the PDMFP-FAPCS for SARS-CoV-2 receptor-binding domain (RBD)-based outer membrane vesicles (OMVs) (RBD-OMVs). Specific probes involved in PDMFP-FAPCS successfully isolated RBD-OMVs. Thus, PDMFP-FAPCS exhibits excellent enrichment of particles, including microbes and nanovesicles, and is an effective pretreatment platform for disease diagnosis and investigation.
在本研究中,我们开发了一种由全自动颗粒浓缩系统(FAPCS)操作的气动驱动微流控平台(PDMFP),用于微米级和纳米级材料的预处理。所提出的PDMFP包括一个带有弯曲流体腔室和通道的三维网络、五个用于阻断流体流动的开关气动阀以及一个用于顺序捕获微珠和目标颗粒的筛阀。使用该装置,浓缩后的目标物会自动释放到出口端口。FAPCS主要包括电磁阀、玻璃储液器、调节器、压力传感器、主印刷电路板和液晶显示触摸面板。微流控平台中的所有气动阀以及玻璃储液器中的工作流体均由FAPCS控制。测量工作流体的流速,以证明使用FAPCS进行所提出的预处理过程的顺序编程操作。在我们的研究中,我们使用带有荧光标记的PDMFP - FAPCS成功实现了快速高效的富集。对微珠进行10分钟的预处理以浓缩微珠,对目标物结合进行25分钟的预处理,几乎所有目标细菌都能被捕获。共有526株革兰氏阴性菌附着在82个微珠上,而革兰氏阳性菌仅附着在100个微珠中的2个上。最后,我们评估了PDMFP - FAPCS用于基于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)受体结合域(RBD)的外膜囊泡(OMV)(RBD - OMV)。PDMFP - FAPCS中涉及的特异性探针成功分离出了RBD - OMV。因此,PDMFP - FAPCS对包括微生物和纳米囊泡在内的颗粒具有出色的富集能力,是一种用于疾病诊断和研究的有效预处理平台。