Li Minhuan, Yue Zhengyuan, Chen Yanshuang, Tong Hua, Tanaka Hajime, Tan Peng
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Nat Commun. 2021 Jun 30;12(1):4042. doi: 10.1038/s41467-021-24256-9.
Solid-to-solid transitions usually occur via athermal nucleation pathways on pre-existing defects due to immense strain energy. However, the extent to which athermal nucleation persists under low strain energy comparable to the interface energy, and whether thermally-activated nucleation is still possible are mostly unknown. To address these questions, the microscopic observation of the transformation dynamics is a prerequisite. Using a charged colloidal system that allows the triggering of an fcc-to-bcc transition while enabling in-situ single-particle-level observation, we experimentally find both athermal and thermally-activated pathways controlled by the softness of the parent crystal. In particular, we reveal three new transition pathways: ingrain homogeneous nucleation driven by spontaneous dislocation generation, heterogeneous nucleation assisted by premelting grain boundaries, and wall-assisted growth. Our findings reveal the physical principles behind the system-dependent pathway selection and shed light on the control of solid-to-solid transitions through the parent phase's softness and defect landscape.
由于巨大的应变能,固-固转变通常通过非热成核途径在预先存在的缺陷上发生。然而,在与界面能相当的低应变能下非热成核持续的程度,以及热激活成核是否仍然可能,大多尚不清楚。为了解决这些问题,对转变动力学进行微观观察是先决条件。使用一个带电胶体系统,该系统能够触发面心立方到体心立方的转变,同时实现原位单粒子水平的观察,我们通过实验发现了受母晶体柔软性控制的非热和热激活途径。特别是,我们揭示了三种新的转变途径:由自发位错产生驱动的晶粒内均匀成核、由预熔晶界辅助的异质成核以及壁辅助生长。我们的发现揭示了系统依赖的途径选择背后的物理原理,并为通过母相的柔软性和缺陷景观来控制固-固转变提供了线索。