Doan David, Kulikowski John, Gu X Wendy
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2024 Mar 25;15(1):1954. doi: 10.1038/s41467-024-46230-x.
Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed matter and build complex metamaterials with unique functionalities. Simulations predict a multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-assemble into a hexagonal phase under an in-plane gravitational potential. Under additional gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a crystalline defect and causes a chain reaction of neighboring particle rotations. Our results provide a framework of studying different structures from hard-particle self-assembly and demonstrates the ability to use confinement to induce unusual phases.
胶体晶体被用于理解凝聚态物质中原子重排的基本原理,并构建具有独特功能的复杂超材料。模拟预测了由各向异性胶体形成的大量自组装晶体结构,但这些形状的制造一直具有挑战性。在这里,我们使用双光子光刻技术制造阿基米德截顶四面体,并在准二维限制条件下将它们自组装。这些粒子在平面内引力势下自组装成六方相。在额外的引力势作用下,六方相转变为准金刚石双元基。原位成像显示,这种相变是由晶体缺陷处粒子的面外旋转引发的,并导致相邻粒子旋转的连锁反应。我们的结果提供了一个研究硬粒子自组装不同结构的框架,并展示了利用限制来诱导异常相的能力。