文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微观磁刺激的躯体抑制。

Somatic inhibition by microscopic magnetic stimulation.

机构信息

Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.

出版信息

Sci Rep. 2021 Jun 30;11(1):13591. doi: 10.1038/s41598-021-93114-x.


DOI:10.1038/s41598-021-93114-x
PMID:34193906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8245477/
Abstract

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.

摘要

电流可以快速、可逆地控制神经活动。在临床实践中,已经使用外部施加的电流来抑制某些神经节细胞。通过电磁感应,微型磁线圈可以对神经节神经元进行焦点刺激。在这里,我们报告说,微型线圈的高频刺激可以可逆地阻断海洋软体动物加利福尼亚海兔的神经节细胞活动,而与神经元的放电频率或神经节周围钾离子的浓度无关。神经节鞘的存在对线圈的抑制作用影响极小。抑制作用局限于神经元的胞体,足以阻断神经元的功能输出。生物物理建模证实,微型线圈在目标胞体附近产生了足够的电场。使用加利福尼亚海兔神经节神经元的多室模型,我们发现高频磁刺激改变了离子通道动力学,这对于维持胞体中动作电位的持续放电至关重要。这项研究的结果为进一步开发针对神经节细胞的微型线圈技术以实现神经控制提供了几个关键的见解。微型线圈为临床应用和实验室研究提供了一种有趣的神经调节策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/da5b243bbe86/41598_2021_93114_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/ee5a796473ff/41598_2021_93114_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/05cd9b59e7c2/41598_2021_93114_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/6fd5a7882645/41598_2021_93114_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/e372d700af24/41598_2021_93114_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/5e0a1fe0b5b4/41598_2021_93114_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/3d1243a58a7e/41598_2021_93114_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/63044c40a922/41598_2021_93114_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/01963fe1f813/41598_2021_93114_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/180ca2fa9a86/41598_2021_93114_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/34272d3cae06/41598_2021_93114_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/da5b243bbe86/41598_2021_93114_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/ee5a796473ff/41598_2021_93114_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/05cd9b59e7c2/41598_2021_93114_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/6fd5a7882645/41598_2021_93114_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/e372d700af24/41598_2021_93114_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/5e0a1fe0b5b4/41598_2021_93114_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/3d1243a58a7e/41598_2021_93114_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/63044c40a922/41598_2021_93114_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/01963fe1f813/41598_2021_93114_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/180ca2fa9a86/41598_2021_93114_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/34272d3cae06/41598_2021_93114_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/8245477/da5b243bbe86/41598_2021_93114_Fig11_HTML.jpg

相似文献

[1]
Somatic inhibition by microscopic magnetic stimulation.

Sci Rep. 2021-6-30

[2]
Axonal blockage with microscopic magnetic stimulation.

Sci Rep. 2020-10-22

[3]
Rapid amplification and facilitation of mechanosensory discharge in Aplysia by noxious stimulation.

J Neurophysiol. 1993-9

[4]
Cellular mechanisms underlying carry-over effects after magnetic stimulation.

Sci Rep. 2024-3-2

[5]
Activity-dependent depression of mechanosensory discharge in Aplysia.

J Neurophysiol. 1993-9

[6]
Identification and characterization of cerebral ganglion neurons that induce swimming and modulate swim-related pedal ganglion neurons in Aplysia brasiliana.

J Neurophysiol. 1995-10

[7]
Multifunctional neuron CC6 in Aplysia exerts actions opposite to those of multifunctional neuron CC5.

J Neurophysiol. 2000-5

[8]
Selective extracellular stimulation of individual neurons in ganglia.

J Neural Eng. 2008-9

[9]
A new technique for chronic single-unit extracellular recording in freely behaving animals using pipette electrodes.

J Neurosci Methods. 1995-4

[10]
A reexamination of the synaptic connection between neuron L7 of the abdominal ganglion and neurons of the branchial ganglion in Aplysia californica, A. kurodai and A. juliana.

Neurosci Lett. 1998-1-23

引用本文的文献

[1]
Magnetic magic: How stimulation alters feeding patterns in Aplysia californica.

Neuroscience. 2025-8-6

[2]
Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles.

Langmuir. 2025-6-10

[3]
Micro-Coil Neuromodulation at Single-Cell and Circuit Levels for Inhibiting Natural Neuroactivity, Neutralizing Electric Neural Excitation, and Suppressing Seizures.

Adv Sci (Weinh). 2025-6

[4]
Restore axonal conductance in a locally demyelinated axon with electromagnetic stimulation.

J Neural Eng. 2025-2-14

[5]
Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol. 2024-12-6

[6]
Cellular mechanisms underlying carry-over effects after magnetic stimulation.

Sci Rep. 2024-3-2

[7]
Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference.

PLoS One. 2024-1-25

[8]
Improving focality and consistency in micromagnetic stimulation.

Front Comput Neurosci. 2023-2-2

[9]
Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities.

J Neuroeng Rehabil. 2022-11-3

[10]
Finding the Location of Axonal Activation by a Miniature Magnetic Coil.

Front Comput Neurosci. 2022-6-29

本文引用的文献

[1]
Axonal blockage with microscopic magnetic stimulation.

Sci Rep. 2020-10-22

[2]
Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field.

Neuroscience. 2020-4-15

[3]
Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study.

Neurophotonics. 2019-10

[4]
Innovations in spinal cord stimulation for pain.

Curr Opin Biomed Eng. 2018-12

[5]
Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study.

J Neural Eng. 2019-3-25

[6]
Mechanisms of Dorsal Root Ganglion Stimulation in Pain Suppression: A Computational Modeling Analysis.

Neuromodulation. 2018-4

[7]
Wireless Neuromodulation for Chronic Back Pain: Delivery of High-Frequency Dorsal Root Ganglion Stimulation by a Minimally Invasive Technique.

Case Rep Med. 2017

[8]
High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction.

Brain Res. 2017-4-15

[9]
Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels.

J Neural Eng. 2017-4

[10]
Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial.

Pain. 2017-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索