Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
Sci Rep. 2021 Jun 30;11(1):13591. doi: 10.1038/s41598-021-93114-x.
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
电流可以快速、可逆地控制神经活动。在临床实践中,已经使用外部施加的电流来抑制某些神经节细胞。通过电磁感应,微型磁线圈可以对神经节神经元进行焦点刺激。在这里,我们报告说,微型线圈的高频刺激可以可逆地阻断海洋软体动物加利福尼亚海兔的神经节细胞活动,而与神经元的放电频率或神经节周围钾离子的浓度无关。神经节鞘的存在对线圈的抑制作用影响极小。抑制作用局限于神经元的胞体,足以阻断神经元的功能输出。生物物理建模证实,微型线圈在目标胞体附近产生了足够的电场。使用加利福尼亚海兔神经节神经元的多室模型,我们发现高频磁刺激改变了离子通道动力学,这对于维持胞体中动作电位的持续放电至关重要。这项研究的结果为进一步开发针对神经节细胞的微型线圈技术以实现神经控制提供了几个关键的见解。微型线圈为临床应用和实验室研究提供了一种有趣的神经调节策略。
Sci Rep. 2021-6-30
Sci Rep. 2020-10-22
J Neurophysiol. 1993-9
J Neural Eng. 2008-9
Neuroscience. 2025-8-6
J Neural Eng. 2025-2-14
Front Bioeng Biotechnol. 2024-12-6
Front Comput Neurosci. 2023-2-2
J Neuroeng Rehabil. 2022-11-3
Front Comput Neurosci. 2022-6-29
Sci Rep. 2020-10-22
Curr Opin Biomed Eng. 2018-12