Suppr超能文献

基于超顺磁性纳米颗粒的(亲和)诊断的计算建模

Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

作者信息

Van Dieren Loïc, Tereshenko Vlad, Oubari Haïzam, Berkane Yanis, Cornacchini Jonathan, Thiessen Ef Filip, Cetrulo Curtis L, Uygun Korkut, Lellouch Alexandre G

机构信息

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

出版信息

Front Bioeng Biotechnol. 2024 Dec 6;12:1500756. doi: 10.3389/fbioe.2024.1500756. eCollection 2024.

Abstract

INTRODUCTION

Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are renowned for their superparamagnetic behavior, allowing precise control under external magnetic fields. This characteristic makes them ideal for biomedical applications, including diagnostics and drug delivery. Superparamagnetic IONPs, which exhibit magnetization only in the presence of an external field, can be functionalized with ligands for targeted affinity diagnostics. This study presents a computational model to explore the induced voltage in a search coil when MNPs pass through a simulated blood vessel, aiming to improve non-invasive diagnostic methods for disease detection and monitoring.

METHODS

A finite element model was constructed using COMSOL Multiphysics to simulate the behavior of IONPs within a dynamic blood vessel environment. Governing equations such as Ampère's law and Faraday's law of induction were incorporated to simulate the induced voltage in a copper coil as MNPs of various sizes flowed through the vessel. Rheological parameters, including blood viscosity and flow rates, were factored into the model using a non-Newtonian fluid approach.

RESULTS

The amount of MNPs required for detection varies significantly based on the sensitivity of the detection equipment and the size of the nanoparticles themselves. For highly sensitive devices like a SQUID voltmeter, with a coil sensitivity approximately 10 V, very low MNP concentrations-approximately 10 μg/mL-are sufficient for detection, staying well within the safe range. As coil sensitivity decreases, such as with standard voltmeters at 10 V or 10 V, the MNP concentration required for detection rises, approaching or even exceeding potentially toxic levels. Additionally, the physical size of MNPs plays a role; larger nanoparticles (e.g., 50 nm radius) require fewer total particles for detection at the same sensitivity than smaller particles like those with a 2.5 nm radius. For instance, at a coil sensitivity of 10 V, a 2.5 nm particle requires approximately 10 particles, whereas a 50-nm particle only needs 10. This highlights the importance of optimizing both detection sensitivity and particle size to balance effective detection with safety.

CONCLUSION

This computational model demonstrates the feasibility of using superparamagnetic nanoparticles in real-time, non-invasive diagnostic systems.

摘要

引言

磁性纳米颗粒(MNPs),特别是氧化铁纳米颗粒(IONPs),以其超顺磁性行为而闻名,能够在外部磁场下实现精确控制。这一特性使其成为生物医学应用的理想选择,包括诊断和药物递送。仅在外部磁场存在时才表现出磁化的超顺磁性IONPs,可以用配体进行功能化,以实现靶向亲和诊断。本研究提出了一个计算模型,用于探索当MNPs通过模拟血管时,搜索线圈中感应电压的情况,旨在改进疾病检测和监测的非侵入性诊断方法。

方法

使用COMSOL Multiphysics构建了一个有限元模型,以模拟IONPs在动态血管环境中的行为。纳入了诸如安培定律和法拉第电磁感应定律等控制方程,以模拟不同大小的MNPs流经血管时,铜线圈中的感应电压。使用非牛顿流体方法,将包括血液粘度和流速在内的流变学参数纳入模型。

结果

检测所需的MNPs数量因检测设备的灵敏度和纳米颗粒本身的大小而有显著差异。对于像超导量子干涉装置(SQUID)伏特计这样的高灵敏度设备,其线圈灵敏度约为10 V,极低的MNP浓度(约10μg/mL)就足以进行检测,且仍处于安全范围内。随着线圈灵敏度降低,如标准伏特计为10 V或10 V时,检测所需的MNP浓度会升高,接近甚至超过潜在的有毒水平。此外,MNPs的物理尺寸也起作用;在相同灵敏度下,较大的纳米颗粒(例如半径为50 nm)与半径为2.5 nm的较小颗粒相比,检测所需的总颗粒数更少。例如,在线圈灵敏度为10 V时,半径为2. nm的颗粒大约需要10个,而半径为50 nm的颗粒只需要10个。这凸显了优化检测灵敏度和颗粒大小以平衡有效检测与安全性的重要性。

结论

该计算模型证明了在实时、非侵入性诊断系统中使用超顺磁性纳米颗粒的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验