Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
Front Immunol. 2021 Jun 14;12:621153. doi: 10.3389/fimmu.2021.621153. eCollection 2021.
Structures of peptide-loaded major histocompatibility complex class I (pMHC-I) and class II (pMHC-II) complexes are similar. However, whereas pMHC-II complexes include similar-sized IIα and IIβ chains, pMHC-I complexes include a heavy chain (HC) and a single domain molecule β-microglobulin (β-m). Recently, we elucidated several pMHC-I and pMHC-II structures of primitive vertebrate species. In the present study, a comprehensive comparison of pMHC-I and pMHC-II structures helps to understand pMHC structural evolution and supports the earlier proposed-though debated-direction of MHC evolution from class II-type to class I. Extant pMHC-II structures share major functional characteristics with a deduced MHC-II-type homodimer ancestor. Evolutionary establishment of pMHC-I presumably involved important new functions such as (i) increased peptide selectivity by binding the peptides in a closed groove (ii), structural amplification of peptide ligand sequence differences by binding in a non-relaxed fashion, and (iii) increased peptide selectivity by syngeneic heterotrimer complex formation between peptide, HC, and β-m. These new functions were associated with structures that since their establishment in early pMHC-I have been very well conserved, including a shifted and reorganized P1 pocket (aka A pocket), and insertion of a β-m hydrophobic knob into the peptide binding domain β-sheet floor. A comparison between divergent species indicates better sequence conservation of peptide binding domains among MHC-I than among MHC-II, agreeing with more demanding interactions within pMHC-I complexes. In lungfishes, genes encoding fusions of all MHC-IIα and MHC-IIβ extracellular domains were identified, and although these lungfish genes presumably derived from classical MHC-II, they provide an alternative mechanistic hypothesis for how evolution from class II-type to class I may have occurred.
肽负载主要组织相容性复合体 I 类(pMHC-I)和 II 类(pMHC-II)复合物的结构相似。然而,尽管 pMHC-II 复合物包括大小相似的 IIα 和 IIβ 链,但 pMHC-I 复合物包括重链 (HC) 和单一结构域分子β2-微球蛋白 (β-m)。最近,我们阐明了几种原始脊椎动物物种的 pMHC-I 和 pMHC-II 结构。在本研究中,对 pMHC-I 和 pMHC-II 结构的综合比较有助于理解 pMHC 结构的进化,并支持 MHC 从 II 型向 I 型进化的早期提出的假设,尽管存在争议。现存的 pMHC-II 结构与推断的 MHC-II 型同源二聚体祖先具有主要的功能特征。pMHC-I 的进化建立可能涉及重要的新功能,例如 (i) 通过结合封闭沟中的肽来增加肽选择性,(ii) 通过非松弛结合来放大肽配体序列差异,以及 (iii) 通过形成肽、HC 和β-m 的同基因异三聚体复合物来增加肽选择性。这些新功能与结构相关,自它们在早期 pMHC-I 中建立以来,这些结构得到了很好的保守,包括一个移位和重新组织的 P1 口袋(又名 A 口袋),以及将一个β-m 疏水旋钮插入到肽结合域β-折叠地板。不同物种之间的比较表明,MHC-I 中的肽结合域的序列保守性优于 MHC-II,这与 pMHC-I 复合物中更严格的相互作用一致。在肺鱼中,鉴定出了所有 MHC-IIα 和 MHC-IIβ 细胞外结构域融合的基因,尽管这些肺鱼基因可能源自经典 MHC-II,但它们提供了一个替代的机制假设,说明从 II 型到 I 型的进化可能是如何发生的。