Suppr超能文献

利用富锌小麦“Zinc-Shakti”鉴定与籽粒锌和铁含量相关的遗传位点和候选基因

Identification of Genetic Loci and Candidate Genes Related to Grain Zinc and Iron Concentration Using a Zinc-Enriched Wheat 'Zinc-Shakti'.

作者信息

Rathan Nagenahalli Dharmegowda, Sehgal Deepmala, Thiyagarajan Karthikeyan, Singh Ravi, Singh Anju-Mahendru, Govindan Velu

机构信息

Indian Agricultural Research Institute, New Delhi, India.

International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.

出版信息

Front Genet. 2021 May 31;12:652653. doi: 10.3389/fgene.2021.652653. eCollection 2021.

Abstract

The development of nutritionally enhanced wheat ( L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.

摘要

培育出铁(Fe)和锌(Zn)含量更高的营养强化小麦,为资源匮乏的小麦消费者解决微量营养素缺乏问题提供了可持续的解决方案。以 “Kachu”דZinc-Shakti” 杂交产生的190个重组自交系(RIL)为材料,于2017 - 2018年、2018 - 2019年和2019 - 2020年生长季在墨西哥奥布雷贡市对籽粒铁和锌浓度以及物候和农艺重要性状进行了表型分析,并利用多样性阵列技术(DArT)分子标记数据确定控制籽粒微量营养素和农艺性状的基因组区域。我们在1B、1D、2B、6A和7D染色体上鉴定出7个控制籽粒锌和铁的新的多效数量性状位点(QTL)。所鉴定出的稳定多效QTL扩大了可用于小麦生物强化育种的QTL多样性。已鉴定出9个具有锌和铁多效QTL最佳组合的RIL,用于未来的杂交计划,并在作为生物强化品种发布之前在精英产量试验中进行筛选。分析揭示了QTL潜在的几个候选基因,包括那些分别属于已知运输小肽和矿物质(从而协助矿物质吸收)的转运蛋白家族和催化磷酸化过程的激酶家族的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d386/8237760/8d3d2570538c/fgene-12-652653-g001.jpg

相似文献

2
Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches.
Mol Biol Rep. 2022 Aug;49(8):8007-8023. doi: 10.1007/s11033-022-07326-z. Epub 2022 Jun 3.
3
6
Mapping of quantitative trait Loci for grain iron and zinc concentration in diploid A genome wheat.
J Hered. 2009 Nov-Dec;100(6):771-6. doi: 10.1093/jhered/esp030. Epub 2009 Jun 11.
7
8
Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations.
Front Plant Sci. 2019 Jan 10;9:1971. doi: 10.3389/fpls.2018.01971. eCollection 2018.
9
Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
Theor Appl Genet. 2021 Jan;134(1):1-35. doi: 10.1007/s00122-020-03709-7. Epub 2020 Nov 2.

引用本文的文献

2
Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism.
Int J Mol Sci. 2025 Feb 28;26(5):2178. doi: 10.3390/ijms26052178.
3
Biofortification of Triticum species: a stepping stone to combat malnutrition.
BMC Plant Biol. 2024 Jul 15;24(1):668. doi: 10.1186/s12870-024-05161-x.
5
Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS.
Mol Biol Rep. 2023 Nov;50(11):9191-9202. doi: 10.1007/s11033-023-08800-y. Epub 2023 Sep 30.
6
Pleiotropic effect analysis and marker development for grain zinc and iron concentrations in spring wheat.
Mol Breed. 2022 Aug 19;42(9):49. doi: 10.1007/s11032-022-01317-5. eCollection 2022 Sep.
7
Mapping of the QTLs governing grain micronutrients and thousand kernel weight in wheat ( L.) using high density SNP markers.
Front Nutr. 2023 Feb 10;10:1105207. doi: 10.3389/fnut.2023.1105207. eCollection 2023.

本文引用的文献

2
A comparison of the Indian diet with the EAT-Lancet reference diet.
BMC Public Health. 2020 May 29;20(1):812. doi: 10.1186/s12889-020-08951-8.
4
Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation.
Cell Mol Life Sci. 2020 Aug;77(16):3085-3102. doi: 10.1007/s00018-020-03473-3. Epub 2020 Feb 19.
6
Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations.
Front Plant Sci. 2019 Jan 10;9:1971. doi: 10.3389/fpls.2018.01971. eCollection 2018.
7
DArTseq-based analysis of genomic relationships among species of tribe Triticeae.
Sci Rep. 2018 Nov 6;8(1):16397. doi: 10.1038/s41598-018-34811-y.
9
Genome-wide analysis of oligopeptide transporters and detailed characterization of yellow stripe transporter genes in hexaploid wheat.
Funct Integr Genomics. 2019 Jan;19(1):75-90. doi: 10.1007/s10142-018-0629-5. Epub 2018 Aug 17.
10
QTL Mapping of Grain Zn and Fe Concentrations in Two Hexaploid Wheat RIL Populations with Ample Transgressive Segregation.
Front Plant Sci. 2017 Oct 18;8:1800. doi: 10.3389/fpls.2017.01800. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验