Tamura Hiroyuki, Saito Keisuke, Ishikita Hiroshi
Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan.
Chem Sci. 2021 May 5;12(23):8131-8140. doi: 10.1039/d1sc01497h.
Exciton charge separation in photosynthetic reaction centers from purple bacteria (PbRC) and photosystem II (PSII) occurs exclusively along one of the two pseudo-symmetric branches (active branch) of pigment-protein complexes. The microscopic origin of unidirectional charge separation in photosynthesis remains controversial. Here we elucidate the essential factors leading to unidirectional charge separation in PbRC and PSII, using nonadiabatic quantum dynamics calculations in conjunction with time-dependent density functional theory (TDDFT) with the quantum mechanics/molecular mechanics/polarizable continuum model (QM/MM/PCM) method. This approach accounts for energetics, electronic coupling, and vibronic coupling of the pigment excited states under electrostatic interactions and polarization of whole protein environments. The calculated time constants of charge separation along the active branches of PbRC and PSII are similar to those observed in time-resolved spectroscopic experiments. In PbRC, Tyr-M210 near the accessary bacteriochlorophyll reduces the energy of the intermediate state and drastically accelerates charge separation overcoming the electron-hole interaction. Remarkably, even though both the active and inactive branches in PSII can accept excitons from light-harvesting complexes, charge separation in the inactive branch is prevented by a weak electronic coupling due to symmetry-breaking of the chlorophyll configurations. The exciton in the inactive branch in PSII can be transferred to the active branch direct and indirect pathways. Subsequently, the ultrafast electron transfer to pheophytin in the active branch prevents exciton back transfer to the inactive branch, thereby achieving unidirectional charge separation.
来自紫色细菌(PbRC)和光系统II(PSII)的光合反应中心中的激子电荷分离仅沿着色素-蛋白质复合物的两个准对称分支之一(活性分支)发生。光合作用中单向电荷分离的微观起源仍存在争议。在这里,我们结合含时密度泛函理论(TDDFT)和量子力学/分子力学/极化连续介质模型(QM/MM/PCM)方法,使用非绝热量子动力学计算,阐明了导致PbRC和PSII中单向电荷分离的关键因素。这种方法考虑了在整个蛋白质环境的静电相互作用和极化下色素激发态的能量、电子耦合和振动耦合。计算得到的沿PbRC和PSII活性分支的电荷分离时间常数与时间分辨光谱实验中观察到的相似。在PbRC中,靠近辅助细菌叶绿素的Tyr-M210降低了中间态的能量,并极大地加速了电荷分离,克服了电子-空穴相互作用。值得注意的是,尽管PSII中的活性和非活性分支都可以接受来自光捕获复合物的激子,但由于叶绿素构型的对称性破坏导致电子耦合较弱,非活性分支中的电荷分离受到阻碍。PSII非活性分支中的激子可以通过直接和间接途径转移到活性分支。随后,活性分支中向去镁叶绿素的超快电子转移阻止了激子回转移到非活性分支,从而实现了单向电荷分离。