Suppr超能文献

采用 TDDFT 方法研究光系统 II 反应中心:对电荷分离前体的深入了解。

A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation.

机构信息

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom.

Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19705-19712. doi: 10.1073/pnas.1922158117. Epub 2020 Aug 3.

Abstract

Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments' porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over Chl and Phe as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton-charge transfer states (ChlPhe)* and (PP)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.

摘要

光系统 II(PS II)在光合作用过程中捕获太阳能并在类囊体膜上引导电荷分离(CS)。其反应中心(RC)中产生的高度氧化、电荷分离状态驱动水氧化。由于光谱高度拥挤,PS II RC 的光谱研究难以解释,需要进行建模以阐明关键的光谱特征。在此,我们介绍了迄今为止报道的最大 PS II RC 模型的时间依赖密度泛函理论(TDDFT)计算结果。该模型明确包括六个 RC 发色团以及叶绿素植醇链和氨基酸残基,这些残基距离色素卟啉环中心<6 Å。将我们的野生型模型结果与突变体 D1-His-198-Ala 和 D2-His-197-Ala RC 的计算结果进行比较,我们模拟的吸收差光谱再现了已知叶绿素吸收带的实验观察到的位移,证明了该模型的预测能力。我们发现,要再现这种行为,必须同时包含附近的残基和植醇链。我们的计算为观察对 CS 前体的激发态有贡献的分子轨道提供了独特的机会。引人注目的是,我们观察到两个具有高振子强度、低能的状态,其中分子轨道在 Chl 和 Phe 以及一个振子强度较弱的状态中离域,分子轨道在 P 叶绿素上离域。这两种构型都与先前鉴定的激子-电荷转移态(ChlPhe)*和(PP)*相匹配。我们的结果证明了 TDDFT 作为一种工具的强大功能,可用于天然光合作用的研究,或实际上用于未来对人工光合作用复合物的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1c/7443915/d6ccfe4d0a36/pnas.1922158117scheme1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验