Suppr超能文献

相对论时空晶体

Relativistic spacetime crystals.

作者信息

Gopalan Venkatraman

机构信息

Department of Materials Science and Engineering, Department of Physics, Department of Engineering Science and Mechanics, and the Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Acta Crystallogr A Found Adv. 2021 Jul 1;77(Pt 4):242-256. doi: 10.1107/S2053273321003259. Epub 2021 May 27.

Abstract

Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2D. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other's clocks as their own, while retaining their original space coordinates, the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞/m)m which is that of a cylinder in 3D, and that of a hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica script is provided for plotting the MS and RBS geometries discussed in the work.

摘要

周期性空间晶体在物理科学中已得到充分确立并被广泛应用。时间晶体则是近年来越来越受到探索的领域,其中时间与空间相互分离。另一方面,周期性相对论时空晶体需要通过洛伦兹变换来考虑狭义相对论中空间和时间的混合,并且目前仅在二维中有所提及。这项工作表明,在传统的闵可夫斯基时空(MS)和这里所说的重整化混合时空(RBS)之间存在一种变换;它们被证明是平坦时空中相对论物理的等效描述。对MS进行这种重新表述有两个要素,即混合和重整化。当两个惯性系中的观察者将彼此的时钟作为自己的时钟,同时保留其原始空间坐标时,观察者就实现了混合。这个过程将洛伦兹变换重新表述为欧几里得旋转,同时保留了描述从原点出发具有恒定时空长度的世界线的原始时空双曲线。通过用一个适当的因子(该因子是各个参考系之间相对速度的函数)对混合坐标进行重整化,双曲线就被变换成了一个欧几里得圆。通过这两个步骤,就得到了带有新光线的RBS坐标,但现在是基于欧几里得构造。现在可以列举不同维度的RBS点群和空间群,并将它们映射到著名的空间晶体群。对于平坦各向同性的RBS时空,其RBS点群在不同维度上被确定为圆柱的点群:二维中的mm2(即矩形的点群)、三维中的(∞/m)m(即圆柱的点群)以及四维中的超圆柱的点群。引入了一种反对称操作,它可以在类空和类时方向之间切换,从而产生彩色时空群。这种形式体系揭示了在传统MS表述中不易显现的RBS对称性。文中还提供了Mathematica脚本,用于绘制该工作中讨论的MS和RBS几何图形。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验