Groh Sebastien, Saßnick Holger, Ruiz Victor G, Dzubiella Joachim
Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany.
Phys Chem Chem Phys. 2021 Jul 14;23(27):14770-14782. doi: 10.1039/d1cp02043a.
The hydroxylation state of an oxide surface is a central property of its solid/liquid interface and its corresponding electrical double layer. This study integrated both a reactive force field (ReaxFF) and a non-reactive potential into a hierarchical framework within molecular dynamics (MD) simulations to reveal how the hydroxylation state of the (110)-rutile TiO2 surface affects the electrical double layer properties. The simulation results obtained in the ReaxFF framework have shown that, while water dissociation occurs only at the under-coordinated Ti5c sites on the pristine TiO2 surface, the presence of point defects on the surface facilitates water dissociation at the oxygen vacancy sites, leading to two protonated oxygen bridge atoms for each vacancy site. As a consequence of enhanced water dissociation at the vacancy sites, water dissociation is quenched at the under-coordinated Ti5c sites resulting in two competitive hydroxylation mechanisms on the (110)-TiO2 surface. Using non-reactive MD simulations with hydroxylation states derived from the ReaxFF analysis, we demonstrate that water dissociation at the vacancy sites is a central mechanism governing the structuring of water near the interface. While the structuring of water near the interface is the main contribution to the electric field, water dissociation at the vacancy site enhances the adsorption of the electrolyte ions at the interface. The adsorbed ions lead to an increase of the effective surface charge as well as surface (zeta) potentials which are in the range of experimental observations. Our work provides a hierarchical multiscale simulation approach, covering a series of results with in-depth discussion for atomic/molecular level understanding of water dissociation and its effect on electric double layer properties of TiO2 to advance water splitting.
氧化物表面的羟基化状态是其固/液界面及其相应双电层的核心性质。本研究将反应力场(ReaxFF)和非反应势集成到分子动力学(MD)模拟的分层框架中,以揭示(110)-金红石型TiO₂表面的羟基化状态如何影响双电层性质。在ReaxFF框架中获得的模拟结果表明,虽然水的解离仅发生在原始TiO₂表面上配位不足的Ti5c位点,但表面点缺陷的存在促进了氧空位处的水的解离,导致每个空位处有两个质子化的氧桥原子。由于空位处水的解离增强,配位不足的Ti5c位点处的水的解离被抑制,导致(110)-TiO₂表面上有两种竞争性的羟基化机制。使用从ReaxFF分析得出的羟基化状态进行非反应性MD模拟,我们证明空位处的水的解离是控制界面附近水的结构的核心机制。虽然界面附近水的结构是电场的主要贡献,但空位处的水的解离增强了电解质离子在界面处的吸附。吸附的离子导致有效表面电荷以及表面(zeta)电位增加,这与实验观察结果一致。我们的工作提供了一种分层多尺度模拟方法,涵盖了一系列结果,并对水的解离及其对TiO₂双电层性质的影响进行了深入讨论,以推进水分解。