Suppr超能文献

从分子水平上理解离子和水对钛植入物表面羟化诱导的高迁移率族蛋白 B1 吸附的影响。

Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants.

机构信息

Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States.

Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States.

出版信息

Langmuir. 2021 Aug 24;37(33):10100-10114. doi: 10.1021/acs.langmuir.1c01444. Epub 2021 Aug 9.

Abstract

Due to its excellent chemical and mechanical properties, titanium has become the material of choice for orthopedic and dental implants to promote rehabilitation via bone anchorage and osseointegration. Titanium osseointegration is partially related to its capability to form a TiO surface layer and its ability to interact with key endogenous proteins immediately upon implantation, establishing the first bone-biomaterial interface. Surgical trauma caused by implantation results in the release of high-mobility group box 1 (HMGB1) protein, which is a prototypic DAMP (damage-associated molecular pattern) with multiple roles in inflammation and tissue healing. To develop different surface strategies that improve the clinical outcome of titanium-based implants by controlling their biological activity, a molecular-scale understanding of HMGB1-surface interactions is desired. Here, we use molecular dynamics (MD) computer simulations to provide direct insight into the HMGB1 interactions and the possible molecular arrangements of HMGB1 on fully hydroxylated and nonhydroxylated rutile (110) TiO surfaces. The results establish that HMGB1 is most likely to be adsorbed directly onto the surface regardless of surface hydroxylation, which is undesirable because it could affect its biological activity by causing structural changes to the protein. The hydroxylated TiO surface shows a greater affinity for HMGB1 than the nonhydroxylated surface. The water layer on the nonhydroxylated TiO surface prevents ions and the protein from directly contacting the surface. However, it was observed that if the ionic strength increases, the total number of ions adsorbed on the two surfaces increases and the protein's direct adsorption ability decreases. These findings will help to understand the HMGB1-TiO interactions upon implantation as well as the development of different surface strategies by introducing ions or ionic materials to the titanium implant surface to modulate its interactions with HMGB1 to preserve biological function.

摘要

由于其优异的化学和机械性能,钛已成为骨科和牙科植入物的首选材料,通过骨锚固和骨整合促进康复。钛的骨整合部分与它形成 TiO 表面层的能力以及它在植入后立即与关键内源性蛋白质相互作用的能力有关,从而建立了第一个骨-生物材料界面。植入引起的手术创伤导致高迁移率族 box1(HMGB1)蛋白的释放,HMGB1 是一种典型的 DAMPs(损伤相关分子模式),在炎症和组织愈合中具有多种作用。为了开发通过控制其生物活性来改善基于钛的植入物临床效果的不同表面策略,需要从分子尺度上了解 HMGB1-表面相互作用。在这里,我们使用分子动力学(MD)计算机模拟来直接深入了解 HMGB1 相互作用以及 HMGB1 在完全羟基化和非羟基化锐钛矿(110)TiO 表面上的可能分子排列。结果表明,HMGB1 最有可能直接吸附在表面上,而不管表面羟基化如何,这是不理想的,因为它可能通过导致蛋白质结构发生变化来影响其生物活性。羟基化的 TiO 表面对 HMGB1 的亲和力大于非羟基化表面。非羟基化 TiO 表面上的水层阻止离子和蛋白质直接与表面接触。然而,观察到如果离子强度增加,吸附在两个表面上的离子总数增加,并且蛋白质的直接吸附能力降低。这些发现将有助于理解植入后 HMGB1-TiO 相互作用以及通过在钛植入物表面引入离子或离子材料来开发不同表面策略,以调节其与 HMGB1 的相互作用,从而保持生物功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验