Suppr超能文献

MHCVision:用于 MHC Ⅰ类肽结合预测的全局和局部假发现率估计。

MHCVision: estimation of global and local false discovery rate for MHC class I peptide binding prediction.

机构信息

Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.

出版信息

Bioinformatics. 2021 Nov 5;37(21):3830-3838. doi: 10.1093/bioinformatics/btab479.

Abstract

MOTIVATION

MHC-peptide binding prediction has been widely used for understanding the immune response of individuals or populations, each carrying different MHC molecules as well as for the development of immunotherapeutics. The results from MHC-peptide binding prediction tools are mostly reported as a predicted binding affinity (IC50) and the percentile rank score, and global thresholds e.g. IC50 value < 500 nM or percentile rank < 2% are generally recommended for distinguishing binding peptides from non-binding peptides. However, it is difficult to evaluate statistically the probability of an individual peptide binding prediction to be true or false solely considering predicted scores. Therefore, statistics describing the overall global false discovery rate (FDR) and local FDR, also called posterior error probability (PEP) are required to give statistical context to the natively produced scores.

RESULT

We have developed an algorithm and code implementation, called MHCVision, for estimation of FDR and PEP values for the predicted results of MHC-peptide binding prediction from the NetMHCpan tool. MHCVision performs parameter estimation using a modified expectation maximization framework for a two-component beta mixture model, representing the distribution of true and false scores of the predicted dataset. We can then estimate the PEP of an individual peptide's predicted score, and conversely the probability that it is true. We demonstrate that the use of global FDR and PEP estimation can provide a better trade-off between sensitivity and precision over using currently recommended thresholds from tools.

AVAILABILITY AND IMPLEMENTATION

https://github.com/PGB-LIV/MHCVision.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

MHC-肽结合预测已被广泛用于理解个体或人群的免疫反应,每个人携带不同的 MHC 分子,也用于开发免疫疗法。MHC-肽结合预测工具的结果主要以预测结合亲和力(IC50)和百分位秩评分报告,通常建议使用全局阈值(例如,IC50 值<500 nM 或百分位秩<2%)来区分结合肽和非结合肽。然而,仅考虑预测分数,很难从统计学上评估个体肽结合预测为真或假的概率。因此,需要描述整体全局误报率(FDR)和局部 FDR(也称为后验误差概率(PEP)的统计数据,以便为原生产生的分数提供统计背景。

结果

我们开发了一种算法和代码实现,称为 MHCVision,用于估计 NetMHCpan 工具的 MHC-肽结合预测结果的 FDR 和 PEP 值。MHCVision 使用修改后的期望最大化框架对二分量 beta 混合模型进行参数估计,代表预测数据集的真实和错误分数的分布。然后,我们可以估计个体肽预测得分的 PEP,反之也可以估计其为真的概率。我们证明,使用全局 FDR 和 PEP 估计可以在使用工具中当前推荐的阈值时提供更好的敏感性和精度之间的折衷。

可用性和实现

https://github.com/PGB-LIV/MHCVision。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d699/8570816/8dcebcf89744/btab479f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验