Suppr超能文献

基于多曝光图像的全卷积网络管腔轮廓检测方法。

A Fully Convolutional Network-Based Tube Contour Detection Method Using Multi-Exposure Images.

机构信息

School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2021 Jun 14;21(12):4095. doi: 10.3390/s21124095.

Abstract

The tube contours in two-dimensional images are important cues for optical three-dimensional reconstruction. Aiming at the practical problems encountered in the application of tube contour detection under complex background, a fully convolutional network (FCN)-based tube contour detection method is proposed. Multi-exposure (ME) images are captured as the input of FCN in order to get information of tube contours in different dynamic ranges, and the U-Net type architecture is adopted by the FCN to achieve pixel-level dense classification. In addition, we propose a new loss function that can help eliminate the adverse effects caused by the positional deviation and jagged morphology of tube contour labels. Finally, we introduce a new dataset called multi-exposure tube contour dataset (METCD) and a new evaluation metric called dilate inaccuracy at optimal dataset scale (DIA-ODS) to reach an overall evaluation of our proposed method. The experimental results show that the proposed method can effectively improve the integrity and accuracy of tube contour detection in complex scenes.

摘要

管状结构的二维轮廓是光学三维重建的重要线索。针对复杂背景下管状结构检测应用中遇到的实际问题,提出了一种基于全卷积网络(FCN)的管状结构轮廓检测方法。该方法以多曝光(ME)图像作为 FCN 的输入,以获取不同动态范围内管状结构轮廓的信息,并采用 U-Net 类型的架构实现像素级密集分类。此外,还提出了一种新的损失函数,可以帮助消除管状结构轮廓标签位置偏差和锯齿形态造成的不利影响。最后,引入了一个名为多曝光管状结构轮廓数据集(METCD)的新数据集和一个名为在最优数据集规模下扩张不准确性(DIA-ODS)的新评估指标,以对所提出的方法进行全面评估。实验结果表明,所提出的方法可以有效地提高复杂场景下管状结构轮廓检测的完整性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec1/8232305/38499853b9c4/sensors-21-04095-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验