Suppr超能文献

上行非正交多址接入中用于分层QoS的双动态调度:一种强化学习方法

Dual Dynamic Scheduling for Hierarchical QoS in Uplink-NOMA: A Reinforcement Learning Approach.

作者信息

Li Xiangjun, Cui Qimei, Zhai Jinli, Huang Xueqing

机构信息

National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China.

New York Institute of Technology, Old Westbury, NY 11568, USA.

出版信息

Sensors (Basel). 2021 Jun 27;21(13):4404. doi: 10.3390/s21134404.

Abstract

The demand for bandwidth-intensive and delay-sensitive services is surging daily with the development of 5G technology, resulting in fierce competition for scarce radio resources. Power domain Nonorthogonal Multiple Access (NOMA) technologies can dramatically improve system capacity and spectrum efficiency. Unlike existing NOMA scheduling that mainly focuses on fairness, this paper proposes a power control solution for uplink hybrid OMA and PD-NOMA in dual dynamic environments: dynamic and imperfect channel information together with the random user-specific hierarchical quality of service (QoS). This paper models the power control problem as a nonconvex stochastic, which aims to maximize system energy efficiency while guaranteeing hierarchical user QoS requirements. Then, the problem is formulated as a partially observable Markov decision process (POMDP). Owing to the difficulty of modeling time-varying scenes, the urgency of fast convergency, the adaptability in a dynamic environment, and the continuity of the variables, a Deep Reinforcement Learning (DRL)-based method is proposed. This paper also transforms the hierarchical QoS constraint under the NOMA serial interference cancellation (SIC) scene to fit DRL. The simulation results verify the effectiveness and robustness of the proposed algorithm under a dual uncertain environment. As compared with the baseline Particle Swarm Optimization algorithm (PSO), the proposed DRL-based method has demonstrated satisfying performance.

摘要

随着5G技术的发展,对带宽密集型和时延敏感型服务的需求与日俱增,导致对稀缺无线资源的竞争愈发激烈。功率域非正交多址接入(NOMA)技术能够显著提升系统容量和频谱效率。与现有主要关注公平性的NOMA调度不同,本文针对双动态环境下的上行链路混合正交多址接入(OMA)和功率域NOMA提出了一种功率控制解决方案:动态且不完美的信道信息以及随机的用户特定分层服务质量(QoS)。本文将功率控制问题建模为一个非凸随机问题,旨在在保证分层用户QoS要求的同时最大化系统能量效率。然后,将该问题表述为一个部分可观测马尔可夫决策过程(POMDP)。由于对时变场景建模的困难、快速收敛的紧迫性、动态环境中的适应性以及变量的连续性,提出了一种基于深度强化学习(DRL)的方法。本文还对NOMA串行干扰消除(SIC)场景下的分层QoS约束进行了变换以适配DRL。仿真结果验证了所提算法在双不确定环境下的有效性和鲁棒性。与基准粒子群优化算法(PSO)相比,所提基于DRL的方法展现出了令人满意的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff45/8271556/0ee11c4f3259/sensors-21-04404-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验