Jiménez-Cavero Pilar, Lucas Irene, Ara-Arteaga Jorge, Ibarra M Ricardo, Algarabel Pedro A, Morellón Luis
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Nanomaterials (Basel). 2021 Jun 2;11(6):1478. doi: 10.3390/nano11061478.
Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO2) thin films, producing spin currents by means of the spin Seebeck effect in γ-Fe2O3/IrO2 bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle θSH scales proportionally to the thin film resistivity, θSH∝ρc, and obtains a value for the spin diffusion length λIrO2 of λIrO2=3.3(7) nm. In addition, we observe a negative θSH for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material.
自旋到电荷的转换是新兴的自旋电子学领域中的核心过程。其主要应用之一是对自旋电流进行电学检测,为此,逆自旋霍尔效应(ISHE)已成为首选方法之一。我们研究了氧化铱(IrO2)薄膜中ISHE的厚度依赖性,通过脉冲激光沉积(PLD)制备的γ-Fe2O3/IrO2双层中的自旋塞贝克效应产生自旋电流。观察到的ISHE电荷电流密度由于自旋扩散长度尺度而呈现最大值,遵循自旋霍尔相关现象的典型行为。通过拟合Castel等人提出的理论,我们发现自旋霍尔角θSH与薄膜电阻率成比例,θSH∝ρc,并得到氧化铱的自旋扩散长度λIrO2的值为λIrO2 = 3.3(7) nm。此外,与先前报道的工作不同,我们在每个研究的厚度和温度下都观察到负的θSH,这为调整基于高电阻自旋霍尔的器件的所需功能带来了可能性。我们将这种行为归因于在这种材料中自旋霍尔电导率具有高度各向异性值的情况下样品的织构生长。